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ABSTRACT

LAPLACIANS OF CELLULAR SHEAVES

THEORY AND APPLICATIONS

Jakob Hansen

Robert Ghrist

Cellular sheaves are a discrete model for the theory of sheaves on cell complexes.
They carry a canonical cochain complex computing their cohomology. This thesis
develops the theory of the Hodge Laplacians of this complex, as well as avenues
for their application to concrete engineering and data analysis problems. The sheaf
Laplacians so developed are a vast generalization of the graph Laplacians studied
in spectral graph theory. As such, they admit generalizations of many results
from spectral graph theory and the spectral theory of discrete Hodge Laplacians.
A theory of approximation of cellular sheaves is developed, and algorithms for
producing spectrally good approximations are given, as well as a generalization
of the notion of expander graphs. Sheaf Laplacians allow development of various
dynamical systems associated with sheaves, and their behavior is studied. Finally,
applications to opinion dynamics, extracting network structure from data, linear
control systems, and distributed optimization are outlined.
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P R E FA C E

This dissertation is perhaps a bit out of the ordinary. It is an effort in applied
mathematics, but takes a less common approach. Rather than taking a problem
to be solved and focusing on a solution to that particular problem, this work
begins with a general phenomenon and builds up a theory around it, working to
connect this theory with real-world instantiations of the phenomenon. Rather than
addressing a specific scientific question, we seek to build a better understanding
of a broad class of behaviors and structures. As we build connections between
theory and the world, questions from reality suggest further avenues for theoretical
investigation.

Properly done, this approach to applied mathematics lifts our view to new ques-
tions rather than simply providing better, faster, or sharper answers to questions
we already knew how to ask. This does not mean a disconnection from the real
world, or an abdication of the responsibility to produce real results. Nor is this
meant to denigrate the valuable work done in more conventional approaches to
applied mathematics. Indeed, the dividing line between these two approaches is
far from precise.

One might find a parallel here with Alexander Grothendieck’s attitude towards
problem solving in algebraic geometry and other fields of pure mathematics.
Likening a problem to be solved with a nut to be opened, he described two plans of
attack. One is to take a hammer and chisel and strike precisely at various points on
the shell until it cracks apart. The other, his preferred method, is more expansive.
As he described in Récoltes et Semailles (translated in [McL03]):

I can illustrate the second approach with the same image of a nut to be
opened. The first analogy that came to my mind is of immersing the nut
in some softening liquid, and why not simply water? From time to time
you rub so the liquid penetrates better, and otherwise you let time pass.
The shell becomes more flexible through weeks and months—when the
time is ripe, hand pressure is enough, the shell opens like a perfectly
ripened avocado!

A different image came to me a few weeks ago. The unknown thing
to be known appeared to me as some stretch of earth or hard marl,
resisting penetration. . . the sea advances insensibly in silence, nothing
seems to happen, nothing moves, the water is so far off you hardly hear
it. . . yet it finally surrounds the resistant substance.

Both approaches are important and valuable, but our approach here will fall
squarely in the second category. The phenomenon we wish to understand is,
broadly, the interaction between local and global information, and the mathematical
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preface ix

tool we will use to model it is the sheaf. This structure was introduced by Jean Leray
during World War II to study partial differential equations, and quickly proved
its utility in geometry and topology. A sheaf over a topological space describes
rules for attaching data to that space in a way that allows local data to be patched
together into a global picture. The prototypical example of a sheaf on a space X
associates to each open set U ⊆ X the set of continuous functions U→ R. A pair of
functions on U and V which agree on U∩ V glue together to a unique function on
U∪ V . This property is the essence of the local-to-global properties controlled by a
sheaf.

The classical theory of sheaves has a simplified, discrete incarnation in the form
of cellular sheaves. Rather than assigning data to open sets of a topological space, a
cellular sheaf assigns data to cells of a regular cell complex, with maps specifying
consistency relations. This perspective on sheaf theory was introduced by Allen
Shepard [She85] and revived by Justin Curry [Cur14]. Since that time, sheaves have
attracted increasing interest in the field of applied algebraic topology, in large part
as a tool for developing the theory of constructions such as Mapper and persistent
homology [Cur15; SMP16].

Here we will focus on a more direct sort of application of the theory of sheaves
(also anticipated by Curry), as a representation of interconnected objects and
systems. Cellular sheaves can represent data structures associated with networks of
various kinds—for instance, social networks, networks of sensors, or more abstract
networks like functional brain networks. The sheaf structure encodes information
about how data should vary over a network or more general space, and homological
properties of the sheaf can encode properties of that network as a system.

The theory of cellular sheaves is only one side of the story. Our goal is to
combine the powerful algebraic tools of sheaves and cohomology with the tools
of network science and spectral graph theory, in particular the graph Laplacian.
The Laplacian operator on a graph both encodes information about the graph and
provides a tool for building networked systems. Combining this toolkit with the
expressive relationships represented by cellular sheaves augments the power of
both sheaves and spectral graph theory. Spectral sheaf theory is no longer limited
by rigid algebraic equality and can provide tools and insights even in the presence
of uncertainty and noise. Conversely, the class of phenomena that can be modeled
using graph Laplacians grows dramatically when we extend it to work with sheaves
on graphs.

This thesis is divided into two parts: one focused on building the theory of sheaf
Laplacians and another outlining areas for its application. As befits the “rising
sea” analogy, the first section is longer. Once the theory is properly constructed,
applications follow simply and naturally. Part I begins by defining cellular sheaves
and constructing their Laplacians. This is followed by a quick review of previous
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constructions on graphs that are reminiscent of cellular sheaves. We then move
to a deeper investigation of the properties of sheaf Laplacians, including their
spectra. This investigation specializes into a notion of approximation for cellular
sheaves, which inspires a definition of expander sheaf generalizing the concept
of an expander graph. The final chapter of Part I explores dynamics that can be
associated with a cellular sheaf. Part II describes how many of the results obtained
in the previous section can be used in practice. Sheaf cohomology, Laplacian spectra,
approximation, and dynamics combine to solve problems in network science and
engineering distributed systems.

Earlier versions of some of the material included in this thesis were formerly
published in

Jakob Hansen and Robert Ghrist. Toward a Spectral Theory of Cellular
Sheaves. Journal of Applied and Computational Topology 3:4 (2019).

Some of the applications in Part II were previously described in

Jakob Hansen and Robert Ghrist. Learning Sheaf Laplacians from
Smooth Signals. IEEE International Conference on Acoustics, Sound,
and Signal Processing, 2019.

Jakob Hansen and Robert Ghrist. Distributed Optimization with Sheaf
Homological Constraints. Allerton Conference on Communication, Con-
trol, and Computing, 2019.
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1
C E L L U L A R S H E AV E S A N D T H E I R L A P L A C I A N S

This chapter introduces the tools we will use in our investigation of the interaction
between local and global: sheaves and cosheaves over regular cell complexes. We
then move to the construction of their Laplacians via discrete Hodge theory and
describe a few basic properties. These definitions and constructions will carry us
through the rest of our investigation. Getting them right clarifies our thinking and
makes future results straightforward.

1.1 cell complexes

Cell complexes are a familiar construction from algebraic topology; they are a
class of topological spaces that can be built by attaching discs (“cells”) of progres-
sively higher dimension to a space in a controlled way. For combinatorial and
computational purposes, it is useful to restrict further to regular cell complexes.

Definition 1.1.1. A regular cell complex X is a topological space partitioned into cells
{Xα}α∈PX which satisfies the following:

1. For each x ∈ X, every sufficiently small neighborhood of x intersects finitely
many Xα.

2. For all α,β ∈ PX, Xα ∩Xβ is nonempty only if Xβ ⊆ Xα.

3. For every Xα, there is a homeomorphism ϕα : Ddα → Xα from the closed
dα-dimensional ball to the closure of Xα, which maps the interior of Ddα

homeomorphically onto Xα.

The second condition ensures that PX is a partially ordered set, where β 6 α
when Xβ ⊆ Xα. This is the face incidence poset of X. We typically write this relation
as βPα, and say “β is a face of α” (or alternately, “α is a coface of β”). When
there are no elements separating β and α in the face incidence poset (and β 6= α),
we can be more specific and write βP1 α, read “β is a codimension-one face of
α.” The face incidence poset is graded by the dimensions of the cells Xα. We write
dimα for the dimension dα of the ball homeomorphic to Xα. The requirement that
the ϕα must be homeomorphisms in condition 3 is the condition that makes X
regular, and it ensures that we can reconstruct X completely from its face poset PX,
something that is not true for general cell complexes.

1



1.1 cell complexes 2

Proposition 1.1.1. Let X be a regular cell complex, with PX its face incidence poset. From
PX we can construct a topological space |PX| which is homeomorphic to X.

Proof. We construct |PX| inductively by dimension, together with a homeomorphism
ϕ : |PX| → X. The 0-skeleton |PX|

0 consists of one point for each α ∈ PX of
dimension 0; the homeomorphism ϕ0 sends |PX|α to Xα.

Once we have constructed the k-skeleton |PX|
k, we can add a (k + 1)-cell σ

by looking at its faces. By the regularity condition, the faces of σ must form a
homeomorphic image of Sk in |PX|

k, so we have the pushout diagram

|PX|
k

Sk |PX|
k ∪ |σ|

Dk+1

We inductively assume that we have a homeomorphism ϕk : |PX|
k → Xk. The same

pushout diagram exists for Xk and Xσ, so we join the two diagrams:

|PX|
k Xk

Sk Sk

Dk+1 Dk+1

ϕk

'

'

Since this diagram commutes, there is an induced homeomorphism between
|PX|

k ∪ |σ| and Xk ∪ Xσ. Repeat this process for all cells of dimension k + 1 to
extend ϕk to a homeomorphism ϕk+1 : |PX|

k+1 → Xk+1.

The class of face incidence posets of regular cell complexes has a combinatorial
characterization, given in [Bjö84]. To explain this, we need a few definitions.

Definition 1.1.2. A shelling of a simplicial complex X is an ordering σ1,σ2, . . . of
the maximal simplices of X such that for every k > 1, all maximal simplices of the
complex

Xk =

(
k−1⋃
i=1

σi

)
∩ σk
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have dimension dimσk − 1. That is, if we build X by gluing together the simplices
σi in order, each new simplex glues along a boundary consisting of cells of
codimension 1 in the new simplex.

Definition 1.1.3. Let P be a partially ordered set, with α 6 β in P. The interval
[α,β] ⊆ P is the set of all γ ∈ P with α 6 γ 6 β.

Definition 1.1.4. Let P be a partially ordered set. The nerve N(P) of P is a simplicial
complex whose k-simplices consist of strictly increasing chains of length k+ 1 in
P. Thus, the 0-simplices of N(P) are the elements of P, the 1-simplices of N(P) are
pairs x1 < x0 ∈ P, and so on. Since a chain in P is simply a subset satisfying a
particular condition, and a subset of a chain is a chain, this collection of subsets of
P is an abstract simplicial complex.

We say that a poset is shellable if its nerve is shellable. Then the characterization
of face incidence posets of regular cell complexes is as follows:

Proposition 1.1.2 ([Bjö84], Prop. 2.2). PX is the face incidence poset of a regular cell
complex if and only if, after adjoining a minimal element 0, the following hold:

1. Every interval [α,β] of length two has four elements.

2. Every interval [0,α] is finite and shellable.

Condition 1 is geometric in origin. For instance, it ensures that every 1-cell has
two distinct endpoints, and that there are precisely two ways to get from a 0-cell
to a 2-cell by “going up” to cofaces. Condition 2 ensures that cells glue together
nicely on a more global scale.

We also want a combinatorially nice class of morphisms for our complexes.
For our purposes, we will call a continuous map f : X → Y between regular cell
complexes a regular cellular map if the image of each cell Xα of X is a cell Yf(α) of
Y with dim Yf(α) 6 dimXα, and the map restricted to Xα is equivalent via some
homeomorphism to the Euclidean projection RdimXα → RdimYf(α) . (This condition
rules out pathological maps like space-filling curves.) Such a map induces a poset
morphism PX → PY , which we will also call f, except in the following proposition,
where they will be distinguished for clarity.

Proposition 1.1.3. A poset morphism ϕ : PX → PY of face incidence posets arises from a
regular cellular map f : X→ Y if and only if for all α ∈ Px

1. dimϕ(α) 6 dimα and

2. ϕ(α) = ϕ(α),

where α is the downset consisting of all elements preceding α in the partial ordering.
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Proof. First, note that Xα = Xα, for if βPα, Xβ ⊆ Xα. Thus, taking downsets in PX
corresponds to taking closures of cells in X.

The requirement that the image of Xα be a cell of Y ensures that a regular
cellular map commutes with closures of cells. Continuity of a map f ensures that
f(Xα) ⊆ f(Xα). On the other hand, Xα is homeomorphic to Dn and hence is
compact, so its image is also compact, and hence f(Xα) is a closed set containing
f(Xα), so it contains f(Xα). Thus, a regular cellular map f induces a poset map
satisfying the conditions (1) and (2).

Conversely, if ϕ : PX → PY is a poset morphism between face incidence posets
satisfying (1) and (2), we construct a map f : X→ Y by induction on skeleta. The
dimension condition (1) ensures that we can define f on 0-skeleta. Suppose we
have a map fk : Xk → Y which represents our poset morphism on Xk. We want to
extend fk over a (k+ 1)-cell σ ∈ PX, so we consider the restriction of fk to ∂σ ⊆ Xk.
Since ϕ(σ) = ϕ(σ), we just need to extend the map X∂σ → Yf(σ) to Xσ. Since Yf(σ)
is homeomorphic to a closed disk, it is contractible, so such an extension exists.
Repeating this construction for all (k+ 1)-cells σ yields fk+1 : Xk → Y, and by
induction we get a map f : X→ Y.

Note that the map constructed in this proof is unique up to homotopy, as there
is only one homotopy class of extension of f over each cell σ.

Two classes of regular cellular maps will be important in what follows. First
are locally injective maps. This is simple to interpret topologically—there is a
neighborhood of every point on which the map is injective. To understand local
injectivity combinatorially, we need to understand the way the topology of X is
encoded in the face poset PX. The subsets of X recognized by the cell structure are
precisely the unions of cells, so the smallest neighborhood of a point x is the star
of the cell containing x. The star of a cell σ, denoted st(σ), consists of all cells of
which σ is a face; equivalently, this is the minimal upwards-closed set containing σ
in PX. Thus, for a cellular map f : X→ Y to be locally injective, it must be the case
that for each cell σ of X, f|st(σ) is an injective, dimension-preserving map on the
cell poset.

We will also consider covering maps. By similar considerations, a map π : E→ X

is a covering map if for each σ ∈ X, π−1(st(σ)) is a disjoint union of isomorphic
copies of st(σ), each of which maps isomorphically onto st(σ).

Simplicial complexes and cubical complexes are special cases of regular cell
complexes, and simplicial and cubical maps are special cases of regular cellular
maps. In particular, 1-dimensional regular cell complexes are equivalent to undi-
rected multigraphs without self-loops. We will therefore sometimes use letters such
as v (for vertex) to refer to 0-cells, and e (for edge) to refer to 1-cells. In certain
situations, it may be convenient to loosen the regularity requirements slightly to
allow 1-cells to have attaching maps which are not homeomorphisms. This amounts
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to allowing “self-loops” at vertices. While this violates the conditions above, it is
usually possible (at least for 1-dimensional complexes) to extend constructions for
regular cell complexes to these complexes with loops. At other times, we may wish
to tighten the restrictions for 1-dimensional complexes, so that there can be at most
one edge between any two vertices. This coincides with a more standard definition
of graph. For the most part, however, these distinctions will not be important.

Lifting simplicial and cubical complexes to regular cell complexes allows us
to perform certain constructions more readily. For instance, the product of two
simplicial complexes is naturally represented by a cell complex, but requires many
more simplices to realize as a simplicial complex. If X and Y are (finite) regular
cell complexes, X× Y has a natural cell structure, with cells σX × σY for σX a cell
of X and σY a cell of Y. The dimension of σX × σY is dim(σX) + dim(σY), and
σX × σY P τX × τY if σXP τX and σY P τY . The projection maps πX : X× Y → X

and πY : X× Y → Y are regular cellular maps with respect to this cell structure.
These maps send a cell σX × σY is sent to σX and σY , respectively.

For the remainder of this thesis, we will identify a regular cell complex X with
its face incidence poset PX, writing such things as σ ∈ X to say that σ is a cell of X.
The preceding arguments should be enough to convince the skeptic that no great
harm is done by this abuse of notation. Working in the category of cell complexes
efficiently combinatorializes all of the topology of the spaces we deal with, giving
us a concrete, readily computable substrate on which to build a theory of sheaves
and their Laplacians.

Additional information about regular cell complexes may be found in [LW69]
and [Cur14].

1.2 cellular sheaves

Regular cell complexes form a natural class of combinatorial spaces. These com-
binatorial properties make it easy to construct a tractable theory of sheaves. The
shortest way to define cellular sheaves is as follows:

Definition 1.2.1. A cellular sheaf valued in a category C on a regular cell complex
X is a (covariant) functor F : PX → C.

Let’s unravel this definition a bit. We think of C as a data category, where objects
represent spaces of data that could potentially be assigned to different cells of X.
Natural candidates are such categories as the category Set of sets and functions,
the category Vectk of k-vector spaces and linear maps, or the category Met of
metric spaces and continuous maps. The data of a functor F from PX to C provides
two things. First, for each cell σ of X, we get an object F(σ) of C. Further, for every
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incident pair of cells σP τ, we get a morphism FσPτ : F(σ) → F(τ) in C. The
functoriality condition ensures that if σP τPχ, we have FτPχ ◦FσPτ = FσPχ.

We call the object F(σ) the stalk of F over σ, and the morphism FσPτ the
restriction map from σ to τ.

One thinks of a cellular sheaf as describing data parameterized by a space,
together with local consistency conditions for that data. Consistent assignments of
data to stalks are known as sections.

Definition 1.2.2. The sections of a cellular sheaf F over an open union of cells U ⊆ X
are given by the limit of the diagram (F(σ))σ∈U. The global sections of F are the
sections over X. The sections of F over U are denoted F(U) or Γ(U;F).

In general, we will be working with data categories which are Set-like, where
objects are sets with some extra structure and morphisms are set functions sat-
isfying extra conditions. (In particular, these categories are complete, so that the
limit defining the sections of a sheaf exists.) In this setting, a section of F over U is
determined by giving its value at each stalk in U. Concretely, we can represent a
section over U by giving some xσ for each σ ∈ U, such that whenever σP τ with
both cells in U, we have FσPτxσ = xτ. Commutativity of the diagram of stalks
ensures that a section is in fact determined by its values on the stalks over cells of
minimal dimension in U. Thus, for instance, a global section is determined by its
values on stalks over 0-cells.

Compare the definition of a cellular sheaf with the standard definition of a
presheaf on a topological space.

Definition 1.2.3. A presheaf valued in C on a topological space X is a contravariant
functor F : O(X) → C, where O(X) is the poset of open sets in X ordered by
inclusion.

Cellular sheaves seem backwards compared with presheaves on topological
spaces. This is because the face incidence poset is dual to a poset of open sets. The
precise statement of this correspondence relies on the Alexandrov topology on PX.
This is the topology generated by upwards-closed sets. Each cell σ has a minimal
neighborhood, namely the star st(σ), consisting of all cells of which σ is a face.1 We
can think of a cellular sheaf on X as a presheaf defined on the cover of X given by
all stars of simplices, since if σP τ, st(σ) ⊇ st(τ). This presheaf extends to a sheaf
defined on all open unions of cells.

The upshot of all of this is that we may think of a cellular sheaf on X as a genuine
sheaf in two ways. One is as a sheaf on PX with the Alexandrov topology, and
the other is as a constructible sheaf on X, determined by its values on stars. These
perspectives are developed in detail in Justin Curry’s thesis [Cur14].

1 This fact also justifies the terminology “stalk,” since the diagram for the colimit defining Fσ has a
terminal element F(σ).
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1.2.1 Cosheaves

Dualizing the definition of cellular sheaves gives us cellular cosheaves.

Definition 1.2.4. A cellular cosheaf valued in C on a regular cell complex X is a
contravariant functor F̂ : PX → C.

Thus, the data of a cosheaf consists of costalks F̂(σ) over cells of X along with
extension maps F̂σPτ : F̂(τ)→ F̂(σ) such that F̂σPτ ◦ F̂τPχ = F̂σPχ for σP τPχ.

Sheaves naturally have sections, while cosheaves naturally have cosections.

Definition 1.2.5. The cosections of a cellular cosheaf F̂ over an open union of cells
U ⊆ X are given by the colimit of the diagram (F̂(σ))σ∈U. The global cosections of F̂
are the cosections over X. We will denote cosections of F̂ over U by F̂(U) or Γ̂(U; F̂).

Because they are constructed by colimits rather than limits, cosections (at least
of cosheaves valued in Set-like categories) are somewhat more mysterious than
sections. While sections can be thought of as lifts of an underlying complex, or as
generalized sorts of functions, cosections are more like equivalence classes of data
located at different places in a space. This is a somewhat nebulous interpretation
which is nevertheless useful when thinking about phenomena like parallel transport
or flows (see Section 1.10).

For most of this thesis, we will focus on cellular sheaves and cosheaves valued in
Vect, although sheaves valued in Set will also play an important role.

Definition 1.2.6. A morphism ϕ : F → G between two cellular sheaves (or
cosheaves) over X is a natural transformation between their functors PX → C.

When we disassemble this definition, we see that a sheaf morphism ϕ : F → G

consists of morphisms ϕσ : F(σ)→ G(σ) subject to the condition that ϕτ ◦FσPτ =

GσPτ ◦ϕσ. Sheaf morphisms give a consistent way of translating local data valued
in one sheaf to another sheaf. Morphisms of cosheaves are analogous; they consist
of component maps ϕσ : F̂(σ)→ Ĝ(σ) that commute with the extension maps.

Taking the global sections of a sheaf is a functorial operation. That is, we have a
functor Γ from the category ShvC(X) of C-valued sheaves to C. A sheaf morphism
ϕ : F → G induces a morphism Γϕ : Γ(X;F) → Γ(X;G), and these induced
morphisms behave properly with respect to composition. Global cosections of a
cosheaf are similarly functorial.

Morphisms of sheaves of vector spaces have kernels and cokernels, and the
category of cellular sheaves of vector spaces over X is an abelian category. Kernels
and cokernels may be computed stalkwise, and it is a nice exercise in diagram
chasing to show that they are in fact cellular sheaves, i. e., they are again functors
PX → Vect. A morphism of cellular sheaves is an epimorphism if it is stalkwise
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surjective, and conversely a monomorphism if it is stalkwise injective. Naturally, a
sheaf isomorphism is a sheaf morphism which is an isomorphism on all stalks.

Definition 1.2.7 (Constant sheaf). Let V be a vector space. The constant sheaf on X
with stalk V is the cellular sheaf V with V(σ) = V for all σ and VσPτ = idV for
all σP τ.

When we work with sheaves of k-vector spaces, the most important constant
sheaf is k. Sections of F correspond with sheaf morphisms ϕ : k→ F. To see this,
observe that ϕσ(1) selects an element of F(σ) for every σ, and by the commutativity
condition for sheaf morphisms, we have FσPτ ◦ϕσ(1) = ϕτ ◦ kσPτ(1) = ϕτ(1).
Thus the elements (ϕσ(1))σ∈X determine a section of F.2

1.3 sheaf operations

Part of the power of sheaf theory is the availability of operations that produce
new sheaves from old ones. This perspective was championed by Alexander
Grothendieck, who identified six important functors: two pushforward and pull-
back functors corresponding to every map of spaces, and the internal Hom and
tensor product. The standard sheaf operations are simpler to define for cellular
sheaves than for their continuous counterparts, and this simplicity will allow us to
understand their interactions with spectral constructions more readily.

Definition 1.3.1 (Direct sum). The direct sum of two sheaves F and G on a cell
complex X is the sheaf F⊕ G with stalks (F⊕ G)(σ) = F(σ)⊕ G(σ) and restriction
maps (F⊕ G)σPτ = FσPτ ⊕ GσPτ.

Definition 1.3.2 (Tensor product). The tensor product of two sheaves F and G on
a cell complex X is the sheaf F ⊗ G with stalks (F ⊗ G)(σ) = F(σ) ⊗ G(σ) and
restriction maps (F⊗ G)σPτ = FσPτ ⊗ GσPτ.

The constant sheaf 0 is an identity for the direct sum: for any sheaf F, 0⊕ F '
F ' F⊕ 0. Similarly, k is an identity for the tensor product: k⊗F ' F ' F⊗ k.

Definition 1.3.3 (Sheaf Hom). The sheaf Hom between two sheaves F and G on a
cell complex X is the sheaf Hom(F,G) where Hom(F,G)(σ) is the space of sheaf
morphisms F|st(σ) → G|st(σ). Since every sheaf morphism F|st(σ) → G|st(σ) contains
the data of a sheaf morphism F|st(τ) → F|st(τ) for σP τ, there is an obvious
restriction map Hom(F,G)σPτ.

2 This argument also holds for sheaves valued in Set, with the constant sheaf with one-element
stalks taking the place of k.
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Note that if the restriction maps of F are invertible, a sheaf morphism on st(σ)
may be given by a morphism F(σ)→ G(σ), since we then have ϕτ = GσPτ ◦ϕσ ◦
F−1
σPτ . In this case, we can represent Hom(F,G)(σ) by the space Hom(F(σ),G(σ)),

and the restriction maps by Hom(F,G)σPτ(ϕ) = GσPτ ◦ϕ ◦F−1
σPτ.

Definition 1.3.4 (Pullback). The pullback of a sheaf F on a cell complex Y over a
cellular map f : X → Y is the sheaf f∗F on X with stalks f∗F(σ) = F(f(σ)). The
restriction maps are given by f∗FσPτ = Ff(σ)P f(τ).

Definition 1.3.5 (Pushforward). The pushforward of a sheaf F on a cell complex
X over a cellular map f : X → Y is the sheaf f∗F on Y with stalks f∗F(σ) =

limσP f(σ ′) F(σ
′). The restriction maps are induced by the fact that if σP τ, then

the diagram for f∗F(σ) contains the diagram for f∗F(τ) and hence f∗F(σ) is the
apex of a cone over the diagram for f∗F(τ) and we get an induced map f∗FσPτ :

f∗F(σ)→ f∗F(τ).

When f is a locally injective cellular map, the relevant diagram for computing
f∗F(σ) consists of several components, each with a single initial object, and so
f∗F(σ) is canonically isomorphic to the direct sum of these initial objects. This
characterization will be useful for defining weighted pushforwards.

The other two standard sheaf operations, the pushforward with compact supports
f! and the derived pullback with compact supports f!, also have descriptions in
terms of cellular sheaves, but they will be less useful in building a spectral theory,
so we will elide their definitions.

1.4 sheaf cohomology

A regular cell complex X is naturally partitioned into cells of different dimensions.
This allows us to construct cellular homology and cohomology theories. Cellular
sheaf cohomology is a form of cellular cohomology with locally varying coefficient
spaces. Given a cellular sheaf of vector spaces F on X, we can produce a complex
of F-valued cochains on X, graded by cell dimension.

Definition 1.4.1 (Cochains). The space of F-valued k-cochains on X is the vector
space

Ck(X;F) =
⊕

dimσ=k

F(σ).

With an appropriately defined coboundary, these cochains form a complex. To
construct the coboundary, we will need one additional gadget, a signed incidence
relation on X. This is a function [• : •] : PX × PX → {0,±1} which satisfies
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1. [σ : τ] 6= 0 if and only if σP1 τ.

2. For any 1-cell χ with faces σ, τ, [σ : χ][τ : χ] = −1.

3. For any σP τ,
∑
χ∈PX [σ : χ][χ : τ] = 0.

The number [σ : τ] represents whether the assigned orientations of σ and τ agree.
Given a signed incidence relation on X, we define the coboundary δk : Ck(X;F)→

Ck+1(X;F) by

δk|F(σ) =
∑

dimτ=k+1

[σ : τ]FσPτ

or equivalently

(δkx)τ =
∑

dimσ=k

[σ : τ]FσPτ(xσ).

It is straightforward to check that δk ◦ δk−1 = 0. We evaluate at a (k− 1)-cochain
supported on a single cell σ:

(δkδk−1xσ)τ =
∑

dimχ=k

[χ : τ]FχPτ((δ
k−1xσ)χ)

=
∑

dimχ=k

[χ : τ]FχPτ([σ : χ]FσPχxσ)

=
∑

dimχ=k

[χ : τ][σ : χ]FσPτ(xσ) = 0.

Thus we have a complex

C0(X;F) C1(X;F) C2(X;F) · · ·δ0 δ1 δ2

of vector spaces associated with F. The cohomology of this complex is the sheaf
cohomology of X with coefficients in F, denoted H•(X;F). A sheaf morphism ϕ :

F → G induces a map of complexes Cϕ : C•(X;F) → C•(X;G), and hence a map
Hϕ : H•(X;F)→ H•(X;G).

When the sheaf under consideration is the constant sheaf with stalk V, the corre-
sponding cochain complex is simply the complex of V-valued cellular cochains of
X. This is the tensor product C•(X; k)⊗V, and hence the cohomology is isomorphic
to H•(X; k)⊗V.

How should we interpret sheaf cohomology? The first place to start is in degree
zero. This has a simple interpretation: H0(X;F) is isomorphic to the space of
global sections of F. To see this, recall first that a global section of F is uniquely
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determined by its values on stalks over 0-cells, that is, by a 0-cochain x ∈ C0(X;F).
A 0-cochain x is a section precisely when, for every 1-cell e with incident 0-cells
u, v, we have FvPexv = FuPexu. On the other hand, x is in H0(X;F) if δ0x = 0, so
we must have

∑
v[v : e]FvPexv = 0 for all 1-cells e. A 1-cell has two faces, say v and

u, and by property (2) of the signed incidence relation, we have [v : e] = −[u : e],
which implies that δ0x = 0 if and only if FuPexu = FvPexv for every e = u ∼ v.

One way to approach higher sheaf cohomology is from the derived functor
perspective, or more simply, through the long exact sequence for sheaf coho-
mology. A sheaf morphism ϕ : F → G induces maps Ck(X;F) → Ck(X;G) that
commute with the coboundary, and hence gives a functorial homomorphism
Hkϕ : Hk(X;F)→ Hk(X;G). A short exact sequence of sheaves

0→ E→ F → G→ 0

is exact on stalks, and hence induces a short exact sequence of complexes

0→ C•(X;E)→ C•(X;F)→ C•(X;G)→ 0.

The snake lemma then gives a long exact sequence for sheaf cohomology:

· · · → Hk−1(X;G)→ Hk(X;E)→ Hk(X;F)→ Hk(X;G)→ Hk+1(X;E)→ · · ·

Let A be a subcomplex of X, with inclusion map i. If F is a sheaf on X, consider
the sheaf i∗i∗F on X. For cells σ of X which are in A, the stalks are the same as
those of F, while for cells not in A, the stalks are the zero vector space. There is a
natural sheaf morphism F → i∗i

∗F, given by the identity on stalks over cells in A,
and the unique morphism F(σ)→ 0 over cells not in A. Since this sheaf morphism
is stalkwise surjective, it is an epimorphism, so we can extend this map to a short
exact sequence

0→ ker(i∗i∗)→ F → i∗i
∗F → 0.

The sheaf ker(i∗i∗) has stalks zero over cells in A, and stalks equal to those of
F otherwise. We can interpret cochains of i∗i∗F as cochains of F supported on A,
while cochains of ker(i∗i∗) are cochains of F vanishing on A. The corresponding
cohomology spaces may be seen as computing relative cohomology, and we will
write

H•(X; ker(i∗i∗)) = H•(X,A;F)
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and

H•(X; i∗i∗F) = H•(A;F),

so we have a long exact sequence

· · · → Hk−1(A;F)→ Hk(X,A;F)→ Hk(X;F)→ Hk(A;F)→ Hk+1(X,A;F)→ · · ·

Returning to the case of a general short exact sequence 0→ E→ F → G→ 0, the
connecting map H0(X;G)→ H1(X;E) gives an obstruction to lifting sections of G
to sections of F. In the relative cohomology case, this means that H1(X,A;F) is a
space containing obstructions to extending sections of F defined on A to all of X.

All of this machinery naturally dualizes to cosheaves of vector spaces, giv-
ing spaces of cosheaf-valued chains C•(X; F̂), boundary maps ∂k : Ck(X; F̂) →
Ck−1(X; F̂), and cosheaf homology H•(X; F̂). For a cosheaf F̂ on a cell complex
X, H0(X; F̂) is isomorphic to the space of cosections of F̂. There is likewise a
cosheaf homology long exact sequence corresponding to a short exact sequence of
cosheaves.

The standard definition of sheaf cohomology treats it as the derived functor of
the global sections functor [KS90; GM03]. Fortunately, it can be shown that for
cellular sheaves, the cohomology theory defined above is equivalent to this more
sophisticated definition. This was perhaps first proved by Allen Shepard [She85],
reiterated by Justin Curry [Cur14], and independently discovered by Everitt and
Turner [ET15]. However, the construction of sheaf Laplacian operators will make
essential use of this canonical model for the cohomology of a cellular sheaf, and
thus is somewhat difficult to extend to other sheaf-theoretic settings common in
algebraic topology and homological algebra.

1.5 weighted sheaves

Our data category needs one more piece of structure before we can construct
Laplacian operators for cellular sheaves. We need to lift from mere vector spaces to
vector spaces that carry an inner product. For a field k = R or C, we consider the
category Hilbk of Hilbert spaces (i. e.complete inner product spaces) over k.

Definition 1.5.1. A weighted cellular sheaf over a cell complex X is a cellular sheaf
valued in Hilbk.

The introduction of an inner product extends a sheaf from an algebraic structure
centered on strict equality to something more quantitative. Given a weighted
cellular sheaf, we can ask about sizes of cochains and coboundaries, and give a



1.5 weighted sheaves 13

precise meaning to the question of “how far” a 0-cochain is from defining a global
section.

Categorically, passing to Hilbk from Vectk turns our data category into a dagger
category. This means we have a contravariant endofunctor † : Hilbk → Hilbop

k ,
which is the identity on objects and satisfies † ◦ † = Id.3 This dagger endofunctor
is precisely the operation of taking the adjoint of a bounded linear map between
Hilbert spaces.4 From a categorical perspective, dagger categories enable us to
single out a class of unitary morphisms, those (iso)morphisms f such that f† =
f−1. This gives a finer notion of equivalence for objects of a dagger category:
we care not just about isomorphism but about unitary isomorphism. In Hilbk,
unitary isomorphisms are precisely the unitary linear transformations—those
which preserve the inner product.

This extends to the categorical operations used when working with sheaves.
The limit used to define the space of sections of a cellular sheaf is unique up to
isomorphism. However, when we add the dagger categorical structure of Hilbk,
we want a finer invariant. The appropriate notion is that of a dagger limit, recently
studied by Heunen and Karvonen [HK19]. The dagger limit of a diagram is unique
up to unitary isomorphism. Unfortunately, dagger limits in Hilbk are somewhat
more rare than limits in Vectk. In particular, Hilbk does not have most dagger
pullbacks. Since the diagram for computing the global sections of a sheaf over
a graph with two vertices and a single edge is a pullback diagram, as shown in
Figure 1.1, this fact is somewhat disheartening. Category theory does not give us a
canonical inner product structure on the space of sections of a weighted sheaf. We
will have to make some choices.

Fortunately, the extra structure afforded by sheaves over cell complexes offers us
a couple of reasonably canonical choices for the weighted space of global sections
of a weighted cellular sheaf. One is simply to view the space of global sections of a
sheaf F as a subspace of the space of assignments to all stalks. That is, the inner
product of two sections x,y ∈ Γ(X;F) is given by

∑
σ∈X〈xσ,yσ〉. Alternately, we

can view sections as a subspace of C0(X;F), and let 〈x,y〉 =
∑

dimσ=0〈xσ,yσ〉. In
general, the latter choice seems to be most useful, as it corresponds with the inner
product on H0 arising from discrete Hodge theory of the cellular cochain complex.

The dagger structure affords a way to dualize a sheaf into a cosheaf with the
same stalks. Simply apply the dagger functor, changing F into a contravariant

3 The requirement that † be the identity on objects makes this definition less than ideal from the
categorical point of view, which prefers to look only at isomorphisms of objects rather than equality.
It is best to think of a dagger category as another kind of structure like a category, rather than a piece
of extra categorical data. (See the discussion in [Bär15].)
4 Unfortunately, everywhere else in this thesis, the dagger symbol † will represent not the dagger
operation on Hilb but the operation of taking the Moore-Penrose pseudoinverse of a linear map
between Hilbert spaces. Let the reader beware.
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F(u) F(e) F(v)

u ve

Γ(X;F)

Figure 1.1: A cellular sheaf whose space of global sections is a pullback.

functor F∗. When stalks are finite dimensional, this cosheaf is isomorphic to the
cosheaf F̂ = Hom(•, k) ◦F, although the particular isomorphism depends on the
inner product structure.

1.6 discrete hodge theory

Hodge theory on a Riemannian manifold selects canonical representatives for
de Rham cohomology classes by using the exterior derivative and its adjoint
to construct the Hodge Laplacians (d+ d∗)2. A similar construction was intro-
duced by Beno Eckmann in the 1940s to study the homology of simplicial com-
plexes [Eck45]. This discrete Hodge theory is useful in approximating Hodge theory
of manifolds [Dod76; Man08; Kal15], and also in discrete data analysis, with ap-
plications to problems like consistent ranking [Jia+11; Xu+17]. The construction
of discrete Hodge Laplacians can be carried out for any chain complex of Hilbert
spaces.

Consider a chain complex C• of finite-dimensional Hilbert spaces. The cobound-
ary map δ has an adjoint δ∗, with which we can construct the discrete Hodge
Laplacian ∆ = (δ+ δ∗)2. Since δ is graded of degree +1 and δ∗ is graded of degree
−1, and since δ2 = (δ∗)2 = 0, ∆ is graded of degree 0. Its individual graded parts
are ∆k = (δk)∗δk + δk−1(δk−1)∗. The key fact about the Hodge Laplacians is that
their kernel computes the cohomology of C•.

Theorem 1.6.1. The spaceCk has an orthogonal decompositionCk = im δk−1⊕ker∆k⊕
im(δk)∗, and ker∆k ' Hk(C•).

Proof. First note that the orthogonal decomposition of Ck implies that ker∆k is
in fact isomorphic to the k-th cohomology of C•. This is because ker δk is the
orthogonal complement of im(δk)∗, so that ker δk = im δk−1 ⊕ ker∆k. Therefore,
ker∆k is the orthogonal complement of im δk−1 in ker δk. But then ker∆k '
ker δk/ im δk−1.
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It is straightforward to see that im δk−1 ⊥ im(δk)∗, since for any x ∈ Ck−1
and y ∈ Ck+1, 〈δk−1x, (δk)∗y〉 = 〈δkδk−1x,y〉 = 0. As a result, if ∆kx = 0, then
both (δk)∗δkx = 0 and δk−1(δk−1)∗x = 0 (since the images of these two operators
are orthogonal). But this implies that δkx = 0, so x ⊥ im(δk)∗; similarly, x ⊥
im δk−1. Thus ker∆k is orthogonal to both im(δk)∗ and im δk−1, and we have
Ck = im δk−1 ⊕ im(δk)∗ ⊕ ker∆k.

We call the elements of ker∆k harmonic k-cochains, and denote the space of such
cochains Hk(C•).

1.7 sheaf laplacians

A cellular sheaf F with values in Hilbk has a complex of cochains, which can be
given a canonical inner product using the orthogonal direct sum. The construction
of the discrete Hodge Laplacian then applies directly. We get the sheaf Laplacians
∆kF, with ker∆kF = Hk(X;F) ' Hk(X;F).

The degree-0 sheaf Laplacian is analogous to the graph Laplacian. Its kernel is a
canonical representation for the space of global sections of F. Just as the kernel of
the graph Laplacian consists of locally constant functions on the vertices of a graph,
the kernel of the degree-0 sheaf Laplacian consists of locally consistent cochains
valued in the vertex stalks of a sheaf. By analogy with the graph Laplacian LG, we
will frequently denote the degree-0 sheaf Laplacian of a sheaf F by LF.

It is common in work on the spectral theory of simplicial complexes [HJ13;
Par13; Ste13] to consider not only the full Hodge Laplacians, but also their separate
upwards and downwards components ∆k+ = (δk)∗δk and ∆k− = δk−1(δk−1)∗. The
up-Laplacian ∆k+ is also called the coboundary Laplacian, and its complementary
down-Laplacian ∆k− is the boundary Laplacian. Most results in spectral simplicial
theory deal with up-Laplacians, since these are more directly analogous to the
graph Laplacian.

The direct sum structure of the spaces Ck(X;F) =
⊕

dimσ=k F(σ) means that we
can—and usually should—think of the sheaf coboundary maps and Laplacians
as block matrices. The connectivity of the underlying cell complex is encoded
in the sparsity pattern of these matrices. For the degree-0 Laplacian, the blocks
are fairly simple to describe. The diagonal blocks are maps F(v) → F(v) for 0-
cells v ∈ X, and we have LF[v, v] =

∑
vPe F

∗
vPeFvPe. The off-diagonal blocks are

maps F(v) → F(u), with u, vP e for some 1-cell e, and the blocks are given by
LF[v,u] = −F∗vPeFuPe. Compare this with the structure of the graph Laplacian,
with L[v, v] = dv =

∑
vPewe and L[v,u] = −we for u, vP e. A comparison of the

graph Laplacian and the sheaf Laplacian is in Figure 1.2.
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(Lx)v =
∑
u∼v

wuv(xv − xu)

(LFx)v =
∑
u,vPe

F∗vPe(FvPexv −FuPexu)

LG =

[
wuv −wuv

−wuv wuv

]
LF =

[
F∗vPeFvPe −F∗vPeFuPe

F∗uPeFvPe F∗uPeFuPe

]

〈x,LGx〉 =
∑
u∼v

wuv(xv − xu)
2

〈x,LFx〉 =
∑
u,vPe

‖FvPexv −FuPexu‖2

Figure 1.2: Comparing the graph Laplacian and the degree-0 sheaf Laplacian

The Laplacians ∆kF are positive semidefinite operators, and hence define quadratic
forms Ek(x) = 〈x,∆kFx〉 on Ck(X;F). For k = 0 we have

E0(x) = 〈x,LFx〉 = 〈δ0x, δ0x〉 = ‖δ0x‖2,

which measures how far a 0-cochain x is from defining a section of F.
Spectral graph theory typically concerns itself as much with adjacency matrices

as with Laplacians. These are determined by the graph Laplacian via the formula
A = D− L, where D is the diagonal degree matrix, equal to the diagonal of L.
We can similarly define an adjacency matrix for sheaves on graphs, by letting
AF = diag(L) − LF, where diag(L) consists of the diagonal blocks of L. We can
think of AF as also defining a quadratic form on C0(X;F), with

〈x,AFx〉 =
∑
u,vPe

〈FuPexu,FvPexv〉.

These sheaf adjacency matrices are more difficult to interpret than sheaf Laplacians.
One problem is that a sheaf adjacency matrix does not uniquely determine its cor-
responding Laplacian. Another is that there is not a clear way to extend adjacency
matrices to sheaves on higher-dimensional complexes. We will mostly ignore sheaf
adjacency matrices, except in the case of matrix-weighted graphs, where Laplacians
and adjacency matrices do contain equivalent information.
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Figure 1.3: Two nonisomorphic graphs with the same Laplacian spectrum

1.7.1 Can one hear the shape of a sheaf?

A famous question in the spectral theory of Laplacian operators was raised by
Mark Kac [Kac66]: “Can one hear the shape of a drum?” That is, from the Dirichlet
spectrum of the Laplacian operator of a planar domain (i. e., the set of frequencies
at which it would naturally vibrate as a drumhead), can one extract the shape of
the domain? This raises the question of whether there exist distinct planar regions
which are isospectral for the Laplacian.5

By analogy, we might also ask “can one hear the shape of a graph?”—that is,
whether there exist nonisomorphic graphs which have the same Laplacian spectrum.
There exist nonisomorphic graphs which are isospectral for the Laplacian; one
example is shown in Figure 1.3. The Laplacians of both graphs have eigenvalues
{0, 3−

√
5, 2, 3, 3, 3+

√
5}. More generally, we might ask if we can hear the shape of

a sheaf, or to what extent the spectrum of the sheaf Laplacian determines the sheaf.
This question is a superset of the question for graphs. Any graph G on n vertices
can be seen as a sheaf on Kn, the complete graph on n vertices, by using some
inclusion map i : G → Kn and the pushforward i∗R of the constant sheaf. Two
such graphs G and H are isomorphic if and only if there exist inclusions i : G→ Kn
and j : H→ Kn such that i∗R ' j∗R. Thus, the negative answer for graphs implies
a negative answer for sheaves: the spectrum of LF does not determine F, even up
to sheaf isomorphism combined with an automorphism of the underlying graph.

The indeterminacy goes even further. Graph Laplacians are in one-to-one cor-
respondence with (weighted) vertex-labeled graphs, so even if the spectrum does
not determine the graph, the Laplacian operator itself does. However, the same
is not true for cellular sheaves on graphs. Consider the two sheaves displayed in
Figure 1.4.

5 For convex regions with analytic boundary, the answer is “yes, one can hear the shape of a drum”
but there do exist non-convex polygonal regions with isospectral Laplacians.
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Figure 1.4: Two nonisomorphic sheaves with the same degree-0 Laplacian

Their coboundary maps have matrices

δF =

1 −1

1 0

0 1

 , δG =
1√
2

[
1 1
√
3 −

√
3

]
.

But we have

LF = δ∗FδF =

[
2 −1

−1 2

]
= δ∗GδG = LG.

So the answer is that not only is it not typically possible to hear the shape of a
sheaf, it is not even possible to see the shape of a sheaf: we cannot always extract
the isomorphism class of a sheaf on a graph from its (degree 0) Laplacian operator.

1.7.2 Normalized Sheaf Laplacians

In spectral graph theory, it is common to use a normalized version of the graph
Laplacian, particularly when working with irregular graphs. The normalized
Laplacian of a graph is typically defined as L = D−1/2LD−1/2, where D is the
diagonal matrix of vertex degrees. This normalization ensures that L remains
symmetric and that the entries on the diagonal of L are all 1.

We would like to do something similar for sheaf Laplacians. Perhaps the obvious
thing to do in order to normalize a degree-0 sheaf Laplacian is to use the block
diagonal degree matrix DF, with DF[v, v] = LF[v, v] and DF[u, v] = 0 for u 6= v.
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This matrix is symmetric and positive semidefinite, so it has a symmetric positive
semidefinite pseudoinverse D†F, which further has a square root D†/2F , so we
might define LF = D†/2LFD

†/2. It is not immediately clear how to extend this
normalization operation to higher-degree Laplacians, nor is its meaning evident.

Instead, we turn to an approach used by Horak and Jost to define normalized
Hodge Laplacians for simplicial complexes [HJ13]. The idea is that normalization is
a property of the interactions of the sheaf restriction maps and the inner products
on stalks, not merely a property of a matrix. An inkling of this approach appears
when one notes that the matrix D−1/2LD−1/2 is similar to the matrix D−1L, which
is self-adjoint with respect to the inner product 〈x,y〉 = xTDy. Thus, we can view
the normalized graph Laplacian as reweighting each vertex proportionally to its
degree.

Motivated by this perspective on the normalized graph Laplacian, we make the
following definition.

Definition 1.7.1. A weighted cellular sheaf F defined on a regular cell complex X is
normalized if for each cell σ of X, the restricted coboundary map δ|F(σ) is unitary on
the orthogonal complement of its kernel. That is, for any x,y ∈ F(σ)∩ ker(δ|F(σ))

⊥,
we have 〈x,y〉 = 〈δx, δy〉.

Lemma 1.7.1. Let F be a weighted cellular sheaf on a finite-dimensional regular cell
complex X. There exists a normalized sheaf F̃ which is isomorphic to F (but not necessarily
unitarily so).

Proof. We construct F̃ by changing only the inner products; this ensures that F̃ ' F.
Suppose X has dimension n. Then the normalization condition is trivially sat-
isfied for all cells σ of dimension n. We recursively define the inner products
on lower-dimensional stalks. Suppose σ has dimension k and F̃ satisfies the nor-
malization condition on all stalks of dimension greater than k. Let Πker

σ be the
orthogonal projection F(σ) → F(σ) ∩ ker δ, and Πσ = id−Πker

σ its complemen-
tary projection. We then define a normalized inner product 〈·, ·〉∼σ in terms of the
already-normalized inner product on Ck+1 and the current inner product on F(σ)

by 〈x,y〉∼σ = 〈δΠσx, δΠσy〉+ 〈Πker
σ x,Πker

σ y〉. This is clearly an inner product, since
the first term is nondegenerate for x ⊥ ker δ and the second term is nondegenerate
for x ∈ ker δ. Further, it obviously satisfies the normalization condition. Iterat-
ing this operation on cells of progressively lower dimension yields a normalized
sheaf.

When F is a sheaf on a graph, this normalization procedure requires only
one step. The new inner product on a vertex stalk F(v) is, for x ⊥ ker δ|F(v),
given by 〈x,y〉∼v = 〈δx, δy〉 = 〈x,Dvy〉. The inner product on C0(X;F) is then
〈x,y〉∼ = 〈x, (D+ idkerD)y〉. The adjoint of δ with respect to this inner product
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is (D+ idkerD)
−1δT = (D† + idkerD)δ

T . Thus, in terms of the original basis for
C0(X;F), the Laplacian of the normalization is LF̃ = (D† + idkerD)δ

Tδ = D†LF.
(The term idkerD vanishes because kerD ⊆ kerLF, which is orthogonal to imLF.) If
we change to an orthonormal basis by applying the transformation D1/2 + idkerD

we get a symmetric matrix D†/2LFD†/2, the analogue of the formula for the
normalized graph Laplacian.

1.8 infinite-dimensional laplacians

The definitions given so far are adapted to sheaves of finite dimensional vector
spaces over complexes with finitely many cells. These restrictions are not essential,
but removing them adds certain complications. On a complex with infinitely many
cells, there are multiple complexes of cochains:

C•c(X;F) =
⊕

dimσ=•
F(σ)

C•(X;F) =
∏

dimσ=•
F(σ)

L2C•(X;F) =

{
x ∈ C•(X;F) :

∑
dimσ=•

‖xσ‖ <∞
}

.

For finite cell complexes, these are all equal, but in general, we only have inclusions

C•c(X;F) ⊆ L2C•(X;F) ⊆ C•(X;F),

inducing morphisms on cohomology groups. Hodge theory requires an inner
product, and hence is naturally defined on L2C• and (given some further conditions)
computes L2H•(X;F). However, sections of a cellular sheaf correspond to H0(X;F),
so that ker∆0 is no longer necessarily isomorphic to the space of global sections.
However, the induced map ker∆0 = L2H0(X;F) → H0(X;F) is injective, since
δx = 0 implies consistency across every 1-cell in X. While compactly supported
sections are also in L2H0, sections supported everywhere on an infinite complex
often will not be. Thus, the kernel of ∆0F might be trivial even though F has
nontrivial global sections.

The question of when the Hodge Laplacians of a complex of Hilbert spaces
computes the L2 cohomology of the complex was addressed in [BL92]. Some
sufficient conditions include finite generation of the cohomology, which ensures
that the coboundary map is a Fredholm operator. More generally, if δ and δ∗

have closed images, the space of harmonic cochains will be isomorphic to the L2

cohomology of the complex.
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If we want to study the spectral properties of the Hodge Laplacians, we generally
want them to be bounded linear operators. This holds if the coboundary maps are
bounded.

Proposition 1.8.1. Let F be a cellular sheaf of Hilbert spaces on a regular cell complex X.
The following conditions are sufficient for δk to be a bounded linear operator:

1. There exists some Mk such that for every cell σ of dimension k, ‖FσPτ‖ 6Mk for
all σP1 τ.

2. Every k-dimensional cell of X has at most dk cofaces of dimension k+ 1.

3. Every (k+ 1)-dimensional cell of X has at most dk+1 faces of dimension k.

These conditions amount to a sort of uniform boundedness for both restriction
maps of F and the cell complex structure of X.

Proof. Let x ∈ L2Ck(X;F). Then we have

‖δkx‖2 =
∑

dimτ=k+1

‖(δkx)τ‖2

6
∑

dimτ=k+1

∑
σP1 τ

‖FσPτxσ‖

2

6
∑

dimτ=k+1

∑
σP1 τ

Mk‖xσ‖

2

6M2
k

∑
dimτ=k+1

dk+1
∑
σP1 τ

‖xσ‖2

=M2
kdk+1

∑
dimσ=k

∑
σP1 τ

‖xσ‖2

6M2
kdk+1d

k
∑

dimσ=k

‖xσ‖2 =M2
kdk+1d

k‖x‖2.

The spectral theory of bounded self-adjoint operators is relatively straightfor-
ward; there is no need to fuss about domains or essential self-adjointness. The
spectrum of a bounded self-adjoint operator consists entirely of approximate eigenval-
ues: those λ for which there exists a sequence of unit vectors {xi} with ‖∆kxi − λxi‖
converging to zero.

Even nicer than bounded operators are compact operators. These are operators
which can be approximated by finite-rank operators. The spectrum of a compact
operator consists only of eigenvalues, but these will in general accumulate at zero.
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Proposition 1.8.2. Let F be a sheaf of Hilbert spaces on a regular cell complex X. The
following conditions are sufficient for δk to be a compact linear operator:

1. For every k-dimensional cell σ with σP1 τ, the restriction map FσPτ is compact.

2.
∑

dimσ=k

∑
σP1 τ

‖FσPτ‖ <∞.

Proof. Since all restriction maps are compact, we may approximate them by se-
quences FiσPτ of finite-rank operators. Combine these into an approximation (δk)i

of δk. Fix an ordering of (k+ 1)-cells of X, and let the operator Pi : Ck+1(X;F)→
Ck+1(X;F) be an orthogonal projection onto the subspace spanned by stalks over
cells of index at most i. Pi(δk)i is a finite-rank operator and

‖Pi(δk)i − δk‖ 6
∑
j>i

∑
σP1 τj

‖FσPτj‖+
∑
j6i

∑
σPτj

‖FiσPτj −FσPτj‖.

The right hand side goes to zero as i goes to infinity, so δk is approximated by a
sequence of finite rank operators.

Infinite graphs can be helpful in understanding finite graphs. For instance,
every d-regular graph has the infinite d-ary tree as its universal cover. A study
of the spectrum of this tree allows us to extract bounds on the spectrum of d-
regular graphs. However, many of the same issues arise with operators on infinite
graphs: for Laplacian and adjacency operators to be bounded, vertex degrees must
be uniformly bounded, and compactness requires a summability condition on
weights.

For the most part, the results in this thesis will be restricted to Laplacians of
sheaves of finite-dimensional Hilbert spaces over finite cell complexes. Most results
will generalize to the infinite dimensional case for compact Laplacians, although in
this situation there is not in general a smallest nonzero eigenvalue, making several
results trivial.

1.9 weighted constant sheaves

Perhaps the most obvious example of a weighted cellular sheaf is the constant
sheaf R on a complex X, with the standard inner product on each stalk. If we take
its Laplacians, we get the unweighted graph Laplacian and the higher discrete
Hodge Laplacians of the complex.

What about weighted graphs? The term “weighted sheaf” may have given it away
already: weighted graphs correspond to constant sheaves R with a custom inner
product on each edge stalk F(e) = R. This is equivalent to specifying a positive
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real number (a weight) for each edge. More generally, for a constant sheaf V, we
should be able to choose any inner product we like on each stalk. We can always
rewrite the restriction maps in terms of a standard orthonormal basis and obtain
a unitarily isomorphic sheaf, but it is important to be aware that the restriction
maps may no longer be represented by identity matrices. For instance, the entries
F∗vPeFuPe of the degree-0 sheaf Laplacian will not be copies of the identity map,
since F∗vPe depends on the inner products on F(e) and F(v). However, assuming
that we stick with the standard inner product on vertex stalks, these blocks will
still be symmetric and positive definite. Indeed, if we want to think of sections of
the constant sheaf Rn as locally constant 0-chains in the standard basis, we should
not perturb the weights on vertex stalks, and only modify it on edges. This is the
typical case for the study of weighted graphs and matrix-weighted graphs.

1.10 vector bundles

Sheaves of vector spaces where all restriction maps are invertible are “locally
constant,” since they are isomorphic to a constant sheaf on each sufficiently small
open set. The classical Riemann-Hilbert correspondence states that, on a sufficiently
nice category of base spaces, locally constant sheaves are equivalent to vector
bundles with a flat connection. (The correspondence is as follows: the kernel of the
connection operator acting on the sheaf of sections of the vector bundle is a locally
constant sheaf, and taking the tensor product of a locally constant sheaf with the
sheaf of functions yields a sheaf which is the sheaf of sections of a vector bundle,
with an obvious flat connection.) Locally constant sheaves are also known as local
systems, and correspond with representations of the fundamental groupoid of the
base space.

A cellular sheaf F on a cell complex X with invertible restriction maps corre-
sponds to a genuine locally constant sheaf |F| on the geometric realization |X|. Local
sections of F over open collections U of cells are in one-to-one correspondence
with local sections of |F| over |U|. If |X| is, for instance, a complex manifold, the
Riemann-Hilbert correspondence gives a vector bundle E→ X together with a flat
connection ∇ : Γ(E) → Γ(E)⊗Ω1(X) whose kernel (as a sheaf morphism) is |F|.
The cellular sheaf F has extra data, though, in the form of the canonical cochain
complex C•(X;F). It is useful to think of δ as a discrete approximation to the
connection ∇. The stalks of the sheaf are analogous to the fibers of E, while the
cell complex structure provides a sort of analogue for the de Rham complex Ω•(X).
Just as a flat vector bundle has a twisted de Rham complex Γ(E)⊗Ω•(X), the sheaf
cochain complex is a twisted version of the cellular cochain complex. The flatness
condition ∇2 = 0 corresponds to the cochain complex condition δ2 = 0. Even when
the technical conditions for the Riemann-Hilbert correspondence do not obtain,
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it is useful to think of a cellular sheaf with invertible restriction maps as a vector
bundle with a flat connection. We will call such a sheaf a discrete vector bundle.

One can equally well describe a local system by a locally constant cosheaf; in
the cellular case, switching between these two representations corresponds to a
dualizing operation that takes the inverse of each restriction map, rather than the
linear dual. For weighted sheaves and cosheaves, these two operations coincide
when all restriction maps are unitary.

We will call a weighted cellular sheaf with all restriction maps in some linear
group G a G-bundle. But in fact this is not quite general enough to capture some
desirable objects, at least for compact groups. We might expect a “weighted SO(1)-
bundle” on a graph to be the same as a weighted constant sheaf. But given inner
products on the stalks, there is only one possibility for each map, and no variation
in weights is possible. Instead, we introduce a slightly more complex definition,
where restriction maps are scalar multiples of maps in G. However, these scalar
multiples must satisfy some consistency relations.

For each cell σ we specify a weight or scaling factor ασ > 0, and require that for
σP τ, FσPτ = ατ

ασ
ρσPτ, with ρσPτ ∈ G. These weights ασ are essentially the same

as the weightings for simplicial complexes described by Horak and Jost [HJ13]. We
can think of this as a uniform scaling of a standard inner product on the stalks
of F. It is common, particularly when working with graphs, to weight all vertices
equally, although this is not necessary, and one way to view the normalized graph
Laplacian is as giving each vertex the weight αv =

√
dv.

This definition is somewhat opaque in its motivation. One justification is that
without a canonical basis, inner products are only meaningful in relation to maps
in or out of a vector space. Scaling an inner product on stalks of a sheaf is
meaningless except for its effect on the restriction maps. Another justification
is more direct: we want weighted O(n)-bundles to correspond with connection
graphs (see Chapter 2.3), which requires us to be able to assign scalar weights to
edges along with orthogonal restriction maps.

The dual descriptions of local systems in terms of sheaves and cosheaves have
different advantages. The sheaf formulation is naturally adapted to understanding
(flat) sections of a bundle, while the cosheaf formulation more naturally represents
parallel transport and holonomy. If F is a vector bundle on a cell complex X as
represented by a sheaf, with F̂ its cosheaf representation, we think of C0(X;F) as
representing not-necessarily-flat sections, while the isomorphic space C0(X; F̂) con-
sists of formal sums of elements of fibers of the bundle. C1(X;F) then corresponds
to something like bundle-valued 1-forms, and C1(X; F̂) corresponds to something
like plans for parallel transport. A 0-cochain of F is flat if it is in ker δ0, while
two elements of C0(X; F̂) are connected by parallel transport if their difference is
in im∂0. Moving to weighted sheaves and cosheaves, the sheaf coboundary map
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gives us information about how far a bundle section is from being flat, while the
cosheaf boundary tells us about how difficult it is to parallel transport one vector
to another. This is related to the discussion of effective resistance and conductance
in Chapter 3.2.



2
A PA N O P LY O F S H E A F - L I K E C O N S T R U C T I O N S O N G R A P H S

The utility of annotating graphs to represent pairwise relationships between nodes
has long been evident. Work done in a variety of fields has led to the development
of many constructions which are similar in spirit to, or even special cases of, sheaves
on graphs. The material in this chapter serves as a review of previous literature
related to the spectral theory of cellular sheaves, as well as a source of inspiration
for those looking to find discrete sheaves that arise in other mathematical contexts.

2.1 signed graphs

The term “signed graph” was introduced by Frank Harary in the 1950s [Har53;
CH56] to describe a formalism for representing social networks. The construction
is simple: A signing of a graph G consists of a choice of sign σe ∈ Z× = {1,−1} for
each edge e of G. Because signs take values in a group, there is a natural way to
give a sign to each path: simply take the product of signs of all edges in the path.
Following earlier notions for triangles developed by Fritz Heider, Harary called a
cycle balanced if its sign was positive. The graph G is then balanced if every cycle is
balanced.

In sheaf theoretic terms, a signed graph is equivalent to an O(1)-bundle on
a graph. A cycle is balanced if it has trivial holonomy, and the signed graph is
balanced if its corresponding sheaf is isomorphic to the constant sheaf.

In a social network with positive edges corresponding to friendships and negative
edges corresponding to enmities, we might expect this balance condition to hold.
After all, “the enemy of my enemy is my friend” (and also “the friend of my
friend is my friend”). Global balance occurs in a social network if there is a
consistent partition of individuals into two mutually antagonistic friend groups.
The expectation that social networks will tend to be balanced in this way can be
used to define systems of dynamics for social networks [AKR06].

2.2 voltage and gain graphs

Voltage graphs and gain graphs are synonymous terms for a generalization of
signed graphs to labels taking values in any group. Let G be an oriented graph,
and let H be a group. A gain graph over G with values in H is an assignment of

26
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some ge ∈ H to each edge e of G. The group element ge is associated with the
positive orientation of the edge e; when we use the edge in reverse, the group
element is inverted. (This distinction is not necessary in signed graphs because
every element of O(1) is its own inverse.) The gain along a path is the product of
the ge for the edges traversed by the path. This product must be taken in order
and respect the orientation of edges.

A sheaf-like way to think of a gain graph is as a principal H-bundle over a graph
G. That is, take a set A with a free and transitive H-action ρ, and construct a sheaf
of sets on G by letting each stalk be equal to A, with the restriction maps for an
oriented edge e = u→ v be given by FuPe = ρ(ge), FvPe = id.

In the context of gain graphs, one often thinks about assignments to vertices,
i. e.functions x : V(G) → H. In particular, there is the special case of “satisfying”
assignments, those for which xv = gexu for any oriented edge e = u→ v. These
are the sections of the associated sheaf of sets. More generally, we may ask how
many edges are satisfied for a given assignment, that is, for how many edges
the alignment condition xv = gexu holds. This question underlies various certain
discrete structures in physics, such as spin glasses and the Ising model [Zas02].

Associated with a gain graph is its set of balanced cycles. These have the property
that they “glue together,” that is, if a theta-shaped subgraph has two balanced
cycles, the third is also balanced. Abstract properties of gain graphs have been
thoroughly investigated by Thomas Zaslavsky [Zas89; Zas91; Zas18], including the
definition of associated matroids generalizing the cycle matroid of a graph. One
such matroid is the frame matroid, whose independent sets are those sets of edges
whose connected components are either simply connected or consist of a single
unbalanced cycle.

Gain graphs also arise in the analysis of flows on a “network with gains” [Jew62],
where each edge of a network admits some input flow and outputs a scaled version
of that input. The gain group is in this case either R+ or R×, depending on if flows
can be turned negative. For the obvious inclusions of these groups into GL(1), we
get (co)sheaves valued in Vect with one-dimensional stalks. The cosheaf boundary
matrices turn out to be the constraint matrices for flow optimization problems over
networks with gains.

Gain graphs (typically with finite gain groups) are used in topological graph
theory to describe covering spaces of graphs, and in this context are called voltage
graphs. The idea is that the group elements ge are H-valued voltages, where we
do not require Kirchoff’s laws to hold. Given a voltage graph G with voltages in a
discrete group H, we can construct a covering space π : E→ G whose fiber π−1(v)
over every vertex v is H, with an edge between hv ∈ π−1(v) and hu ∈ π−1(u) for
an oriented edge e = u ∼ v if gehu = hv. This realizes the principal H-bundle
defined by G as a covering space of G. More generally, if A is an H-set, we can
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perform the same construction with fibers A; this is frequently done for Sn-valued
voltage graphs with A an n-element set.

The application to topological graph theory is as follows: given a voltage graph
G embedded in a topological surface Σ, there exists a derived surface Σα together
with an embedding of the induced covering E of G in Σα. Some careful analysis
of graphs that arise as covering spaces of very simple graphs then allows us to
construct interesting embeddings of these graphs. A thorough discussion of voltage
graphs in the context of topological graph theory may be found in [GT87].

2.3 connection graphs

The graph Laplacian, in various normalizations, can function as a discrete approx-
imation to the Laplace-Beltrami operator of a Riemannian manifold. This is the
basis for dimensionality reduction methods like Laplacian eigenmaps [BN03] and
diffusion maps [CL06], which use eigenvectors of Laplacians to give nice coordinate
functions for data points sampled from a submanifold of Euclidean space.

There are other Laplacian-like operators on Riemannian manifolds, including the
connection Laplacian ∆∇, which is the degree-0 Hodge Laplacian for the complex
of TM-valued differential forms. That is, if we view the Levi-Civita connection ∇ as
a map Γ(M; TM)→ Ω1(M)⊗ Γ(M; TM), the connection Laplacian is ∆∇ = ∇∗∇.1

Singer and Wu showed that a graph Laplacian-like construction can approximate
the connection Laplacian on a manifold embedded in Euclidean space [SW12].
They called the matrices so produced graph connection Laplacians. These matrices
have a block structure with n×n blocks. Each diagonal block is a scalar multiple of
the identity, while off-diagonal blocks are scalar multiples of orthogonal matrices.
These graph connection Laplacians can be used to construct an analogue of the
diffusion maps technique, called vector diffusion maps, taking into account the
holonomy of parallel transport of tangent vectors when distances between points
are calculated.

A graph connection Laplacian is associated to and defines a connection graph,
where each oriented edge u→ v of a graph is assigned both a positive real weight
wuv and an orthogonal matrix ρuv ∈ O(n). The oppositely oriented edge has
the same weight and inverse rotation ρvu = ρ∗uv. The connection Laplacian has
diagonal blocks L[u,u] = (

∑
u∼vwuv) I and off-diagonal blocks L[u, v] = −wuvρuv.

This definition should remind the reader of the data of an O(n)-bundle on a
graph, since it is precisely that. Given a connection graph, we construct a sheaf
with all stalks Rn whose restriction maps are either the identity or ρuv, depending
on the orientation. The inner product on the edge stalk is wuv times the standard

1 This definition is really that of the Bochner Laplacian, but this is equivalent to the connection
Laplacian up to a sign. See [Nic07, ch. 10].
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inner product on Rn. Under this correspondence, the graph connection Laplacian
is the same as the sheaf Laplacian, and the sheaf coboundary is a discrete analogue
of the connection. The relationship with vector bundles was noted by Gao, Brodzki,
and Mukherjee [GBM19], who gave an explanation of graph connection Laplacians
as Hodge Laplacians associated to a twisted cochain complex. The construction in
terms of the cochain complex of a cellular sheaf is more suitable, however, because
it both acknowledges the freedom to choose a basis for the edge stalks and allows
for an extension to higher-dimensional base spaces.

Connection graphs have attracted attention for use in problems other than mani-
fold learning, particularly synchronization. This is a class of data analysis problem
in which a collection of parameters must be retrieved from (noisy) knowledge of
pairwise relationships between the parameters. Perhaps the canonical example is
recovering orientations in O(2) for a collection of camera angles given knowledge
of the pairwise rotations. When this data is noisy, eigenvectors of the corresponding
connection Laplacian serve as good approximate solutions [Sin11]. More generally,
given this information we can try to group objects into consistent clusters, as
in [CK15] and [GBM19], or try to determine which observed pairwise relationships
are likely to be incorrect via a sparsification-like algorithm [ZKC14]. An interesting
application of these tools arises in [HLW19], where eigenvectors of a graph con-
nection Laplacian are used to find the correct orientations for pieces of a jigsaw
puzzle.

There has also been interest in connection graphs as an avenue for “high-
dimensional” generalization of spectral graph theory. Rather than raising the
dimension of the base space as in spectral simplicial theory, one raises the di-
mensionality of the data associated with the graph. This program has produced a
Cheeger inequality [BSS13] and results on random connection graphs [EKW15].

2.4 horizontal diffusion maps

Another extension of diffusion maps methods is the horizontal diffusion maps algo-
rithm recently introduced by Tingran Gao [Gao19]. This algorithm is motivated by
a synchronization-like problem in shape matching. Consider a collection of shapes
Fi, together with maps defining a matching between points of pairs Fi, Fj. The
canonical example is a collection of bones from related species of animal, where
we have computed the “best” homeomorphism between the surfaces of the bones
for pairs of closely related animals. We wish to understand the global structure
of this collection of shapes, in order to do things like consistent segmentation or
classification.

We think of the shapes Fi as fibers of a bundle over a manifold representing
the space of species. The matchings between shapes determine a connection on
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the fiber bundle. The horizontal diffusion maps algorithm constructs a discrete
approximation to a “horizontal” Laplacian operator defined on such a bundle.
Given a Riemannian fiber bundle π : E → X, we sample points from X to give
vertices xi of a graph G, and sample a set of points {yik} = Yi in the fiber Exi over
each xi. We compute a matching between probability distributions on the sets Yi
and Yj by allowing these distributions to diffuse under parallel transport on X.
Taking the union of all the Yi, these matchings give weighted edges between points
in Yi and points in Yj, combining into a weighted graph H with a map H→ G.

We think of H as a sort of discrete fiber bundle over G, and taking the pushfor-
ward of the (weighted) constant sheaf on Y gives us a sheaf representation of this
fiber bundle. The Laplacian of the pushforward sheaf is what Gao terms the graph
horizontal Laplacian, on which the horizontal diffusion maps algorithm acts by nor-
malizing and taking eigenvectors. In the context of the “bundle of bones” discussed
above, these can be used to produce low-dimensional embeddings or clusterings of
the set of specimens that respect the consistency of the surface matchings, or to
produce consistent partitions or landmarks on the bone surfaces.

2.5 matrix-weighted graphs

Another way of extending spectral graph theory to higher-dimensional data is
by assigning matrix-valued weights to the edges of a graph. That is, rather than
assigning a positive real number to each edge, we assign an n×n positive semidef-
inite matrix to each edge. The corresponding Laplacian and adjacency matrices
are easy to construct: if Wuv is the weight matrix for the edge u ∼ v, the adjacency
matrix A is a block matrix with n×n block entries A[u, v] =Wuv. The Laplacian
matrix has the same block structure, with diagonal blocks L[u,u] =

∑
u∼vWuv and

off-diagonal blocks L[u, v] = −Wuv.
These constructions have been considered under the name “matrix-weighted

graph,” with connections to problems in engineering. For instance, consensus on
matrix-weighted graphs can produce nontrivial formations of autonomous agents
in the plane [Tri+18], or help understand the synchronization behaviors of certain
electrical circuits [Tun16]. Others have also happened upon this natural construc-
tion, and have defined a notion of effective resistance for such graphs [ABRK19].

A positive definite matrix defines an inner product on Rn, so if all weights are
strictly positive, we can view a matrix-weighted graph as defining a weighted
structure on the constant sheaf Rn, where the standard inner product is used
for the vertex stalks and the weight matrix Wuv defines the inner product on
edge stalks. A semidefinite matrix defines an inner product on its image in Rn

(or equivalently, the orthogonal complement—with respect to the standard inner
product—of its kernel), so it naturally defines a weighted sheaf structure on a sheaf
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with vertex stalks Rn and edge stalks imWuv, with restriction maps the orthogonal
projections Rn → imWuv (again with respect to the standard inner product).

A slightly different perspective comes from taking a rank-revealing decomposi-
tion Wuv = R∗uvRuv of each weight matrix, and set, for each edge e = u ∼ v, the
restriction maps FuPe = FvPe = Ruv. This sheaf has vertex stalks F(v) = Rn and
edge stalks F(e) = RrankWuv , with the standard inner products. This construction
is unitarily isomorphic to the first; the isomorphism is given by taking the identity
on vertex stalks and Ruv|imWuv

on edge stalks. A short calculation shows that the
sheaf Laplacian of this sheaf is equal to the matrix-weighted Laplacian.

2.6 weighted simplicial complexes

A recent research program has defined and studied “weighted simplicial complexes”
in a sense more general than that used in standard discrete Hodge theory. These
results have largely focused on the case where integral domain-valued weights are
assigned to simplices [RWW18; Wu+19; Wu+20], but one iteration used a broader
definition [Wu+19].

This definition is as follows: Let X be a simplicial complex, R a commutative ring,
and M an R-module. A weight function on X is a function φ : X×X→ R, such that
for every simplex σ ∈ X and x ∈M,

φ(diσ,djdiσ)φ(σ,diσ)x = φ(djσ,djdiσ)φ(σ,djσ)x.

There are four simplices involved in this equation, didjσPdiσ,djσPσ. If we think
of φ(τ,σ) as defining a map FσPτ :M→M, we see that this equation is precisely
the commutativity condition for these maps to define a cosheaf on X with all stalks
equal to M. The paper [Wu+19] goes on to define the cohomology of such weighted
complexes, as well as Hodge Laplacians for the case R =M = R.

2.7 unique games

The unique games conjecture was introduced by Subhash Khot as a question
about the computational complexity of computing approximate solutions to certain
problems [Kho10]. The goal was to find a universal problem whose complexity
of approximation controls that of many other problems. One formulation of the
problem that the unique games conjecture considers is the label cover problem with
unique constraints. An instance of this problem consists of a finite set A, an oriented
graph G, and an automorphism ϕe of A associated to each oriented edge of G, so
that reversing the orientation of e replaces ϕe with its inverse. (This is precisely
the data of a bundle over G with fiber A as for a gain/voltage graph.) The label
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cover problem is to find the satisfiability fraction—the maximal proportion of edges
that can be satisfied by an assignment xv ∈ A for each vertex. In bundle-theoretic
terms, how close is the bundle to having a section?

If the bundle has a section, it is easy to find, since it must be uniquely determined
on each connected component of G by its value at a single vertex. However, finding
the satisfiability fraction for a bundle without a section appears to be quite difficult
in general. The unique games conjecture makes this precise:

Conjecture (Unique Games Conjecture). For sufficiently small ε, δ > 0, there exists
some constant k such that it is NP-hard to distinguish at least (1− δ) satisfiable instances
of the label cover problem with a label set of size k from at most ε-satisfiable instances.

Recent work [KMS17; KMS18] has proved a relaxed version of this conjecture, the
2-to-2 games conjecture, which looks for sections of a sheaf of sets over a graph, rather
than just a bundle. An instance of the label cover problem with 2-to-2 constraints is
a graph G together with a sheaf of sets on G with vertex stalks equal to some set
A, and where the fibers F−1

vPe({x}) of the restriction maps have cardinality 2. This
means that for a given xv ∈ F(v), there exist two satisfactory extensions xu to an
adjacent vertex u.

The proof of the 2-to-2 games conjecture relies on an interesting construction:
the Grassmann graph Gr(Fnp ,k) for a vector space over a finite field. This graph
has an associated sheaf, analogous to the tautological bundle for a Grassmannian
manifold.

Definition 2.7.1 (Grassmann graph). The Grassmann graph Gr(Fnp ,k) is a graph
with one vertex v for each k-dimensional subspace Wv 6 Fnp , and an edge between
vertices u and v if Wu ∩Wv is of dimension k− 1.

There is a tautological cosheaf of Fp-vector spaces over the Grassmann graph,
where the stalk F̂(v) over v is the vector space Wv, the stalk over an edge e = u ∼ v

is F̂(e) =Wu ∩Wv, and all extension maps are inclusions of subspaces. The sheaf
on Gr(Fnp ,k) used in the proof of the 2-to-2 games conjecture is a sheaf of sets dual
to this cosheaf. The stalk over a vertex v is the set of linear functions Wv → Fp,
with the restriction maps now restriction of functions to a subset of their domain.
It turns out that this sheaf of binary functions on the Grassmann graph for Fn2
can encode a known-hard approximation problem as a subset of a 2-to-2 games
problem. A key piece of the proof is showing that 0-cochains of this sheaf which
are consistent over most edges do not always have a nearby section; in other words,
approximate sections do not always lie close to sections.
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2.8 multilayer networks

Network science has a long history of interesting insights predicated on the notion
that connectivity relations within a system are important. These results typically
abstract away the nature of the connections, focusing only on whether a given link
exists or not. Recently, more attention has been drawn to the fact that in many
situations, the nature of these connections is also important. One tool introduced
to model these situations is the multilayer network.

Definitions vary widely (see [Kiv+14]), but one common formulation is that a
multilayer network is represented by an edge-colored multigraph. There is often
also some implied structure on the set of vertices, typically defining clusters of
vertices that form supernodes, or sets of vertices that all correspond to the same
referent. A typical picture—and the origin of the term “multilayer”—is of a series
of graphs stacked together over some base space. For instance, in a transportation
network, the layers might correspond to different modes of transportation, or in
a social network, different layers might correspond to different types of social
relationships, e. g., friends, coworkers, acquaintances.

This picture of a stack of graphs fibered over a base graph suggests a model using
sheaves. The pushforward of the constant sheaf on the union of the graph layers
is one possible sheaf model for multilayer networks. Indeed, the so-called supra-
Laplacian of a multilayer network can be seen as the Laplacian of this pushforward
sheaf.

It is best not to take this analogy too far. Much of the work done with multilayer
networks is difficult to formulate in sheaf-theoretic terms. In many cases the natural
semantic interpretations of a sheaf and of a multilayer network are simply different.
However, the relationship is interesting to note and may prove fruitful in further
interactions between network science and sheaf theory.

2.9 sheaves on graphs

Joel Friedman used a construction he called “sheaves on graphs” to prove the
Hanna Neumann conjecture on subgroups of a free group [Fri15]. Friedman’s
sheaves are in our terminology cellular cosheaves. That is, they consist of an
assignment of vector spaces to vertices and edges of a graph, with maps from the
spaces over edges to the spaces over their incident vertices. Friedman interprets
these as sheaves for a particular Grothendieck topology associated to the graph.
The homology of particular cosheaves is related to the properties of certain covering
maps of graphs.

The reason for the interest in graph coverings and cosheaves for a problem in
group theory is that subgroups of a free group correspond to coverings of a graph
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via the fundamental group. Each covering map of graphs E → G determines a
cosheaf on G, the pushforward of the constant sheaf on E. Representing covers in
this way allows us to do things like construct kernels and cokernels of maps of
covering spaces.

In an offhand remark, Friedman defined Laplacians and adjacency matrices
for these sheaves on graphs, equivalent to the Hodge-theoretic definitions, and
suggested their study as an extension of spectral graph theory. Subsequent work
on sheaves by Friedman and collaborators has focused on homological properties
of sheaves associated to graphs, applied to such topics as the graph Riemann-Roch
theorem [FF17].



3
G E N E R A L I T I E S O N S H E A F L A P L A C I A N S

Having made the appropriate definitions and explored some examples, we can
begin to develop more seriously the theory of Laplacians of cellular sheaves. The
results here will not involve the spectra of these operators, and so are not properly
part of a spectral sheaf theory. However, much of this material will be useful in
applications of sheaf Laplacians to engineering and data analysis problems.

3.1 harmonicity

The spaces of harmonic cochains H(X;F) of a sheaf are solutions to the equation
∆kx = 0. This equation is analogous to Laplace’s equation on a manifold without
boundary. We might adjust this condition somewhat by asking for the Laplacian
to vanish only on a selection of cells, analogous to a boundary value problem
in the world of partial differential equations. Given a subcomplex B ⊆ X with
complement U = X \B, and a cochain y ∈ Ck(B;F), the degree-k sheaf boundary
value problem is

(∆kFx)|U = 0

x|B = y

This problem is commonly known as harmonic extension: given a cochain on the
boundary B, we wish to extend it to the rest of the complex so that it is harmonic
on U.

Solving this problem is a straightforward exercise in linear algebra. Take a block
decomposition of ∆kF and write the problem to be solved as[

∆k[U,U] ∆k[U,B]

∆k[B,U] ∆k[B,B]

][
x|U

y

]
=

[
0

z

]
.

(We will drop the subscript F for notational convenience.) Since z is a free variable,
the only constraint is that ∆k[U,U]x|U +∆k[U,B]y = 0. This equation always has
a solution when im∆k[U,U] contains im∆k[U,B], and this solution is unique if
∆k[U,U] is invertible. This problem turns out to be closely related to relative sheaf
cohomology.

35



3.1 harmonicity 36

Proposition 3.1.1. Let X be a regular cell complex with B ⊆ X a subcomplex, with F a
weighted cellular sheaf on X. Given a k-cochain x|B defined on B, there exists a k-cochain
x ∈ Ck(X;F) which is the harmonic extension of x|B, and x is unique if and only if the
map Hk(X,B;F)→ Hk(X;F) is zero.

Proof. First note that im∆k[U,B] is always contained in im∆k[U,U]. This is a
general fact about symmetric positive semidefinite matrices. If x ∈ ker∆k[U,U],
then its extension by zero to Ck, x̃, is in ker∆k. In particular, this means that
∆k[B,U]x = 0, and hence x is orthogonal to the image of ∆k[B,U]∗ = ∆k[U,B].
Since ker∆k[U,U] = (im∆k[U,U])⊥, we see that im∆k[U,U] ⊇ im∆k[U,B]. Thus,
every cochain on B has a harmonic extension to U.

For the question of uniqueness, consider now the direct sum decomposition
Ck(X;F) = Ck(B;F)⊕Ck(X,B;F). The coboundary map of F does not split across
this decomposition, but it does have a block structure

δk =

[
δk[B,B] 0

δk[U,B] δk[U,U]

]
.

The Hodge Laplacian of the complex Ck(X,B;F) is the Hodge Laplacian gener-
ated by δ[U,U], namely

∆k(X,B) = (δk[U,U])∗δk[U,U] + δk−1[U,U](δk−1[U,U])∗.

Meanwhile, the [U,U] block of the matrix ∆k is

(δk[U,U])∗δk[U,U] + δk−1[U,U](δk−1[U,U])∗ + δk−1[U,B](δk−1[U,B])∗

= ∆k(X,B) + δk−1[U,B](δk−1[U,B])∗.

We now need to determine when ∆k[U,U] is invertible. Since ∆k[U,U] =

∆k(X,B) + δk−1[U,B](δk−1[U,B])∗, we know that ker∆k[U,U] ⊆ Hk(X,B;F). In-
deed, it is equal to Hk(X,B;F)∩ (im δk−1[U,B])⊥. On Hodge representatives for
cohomology, the connecting map d : Hk−1(B;F) → Hk(X,B;F) is computed by
δk−1[U,B] restricted to harmonic cochains, so we have ker∆k[U,U] = (imd)⊥, and
hence this is zero if and only if imd = Hk(X,B;F). By exactness, this condition
is equivalent to the vanishing of the map Hk(X,B;F) → Hk(X;F) in the relative
cohomology long exact sequence.

The image of the relative Hodge cohomology H(X,B;F) in H(X;F) is essentially
the “harmonic extension of zero.” It therefore controls the indeterminacy of har-
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monic extensions of nonzero boundary conditions. Of course, we can also solve the
harmonic extension problems for the up- and down-Laplacians alone; harmonic
extension for the up-Laplacian is related to effective resistance, as we will see in
Section 3.2.

Harmonic extension has another interpretation in terms of a variational problem.
Recall the Laplacian quadratic form Ek(x) = 〈x,∆kFx〉. We may think of this as
giving the energy associated to each cochain of F. The harmonic cochains Hk are
those cochains x with Ek(x) = 0. We can thus think of harmonic extension as a
minimization of Ek subject to boundary conditions:

min 〈x,∆kFx〉
s.t. ΠBx = y

where ΠB is the orthogonal projection Ck(X;F) → Ck(B;F). This problem is
equivalent to the formulation in terms of the vanishing of ∆kx on X \B. To see this,
note that this is a convex program with linear constraints; the Lagrangian is

L(x, λ) = 〈x,∆kFx〉+ 〈λ,PBx− y〉

and the Lagrange multiplier conditions are

2∆kFx = Π
∗
Bλ

ΠBx = y.

Π∗Bλ is a k-cochain which is zero on stalks over cells not in B, and has values
determined by λ on stalks over cells in B. Thus the optimality condition is equivalent
to

(∆kFx)|U = 0

x|B = y.

Casting harmonic extension as an optimization problem gives us another way to
see that every boundary condition has a harmonic extension, since the optimization
problem here is always feasible.

3.1.1 O(n)-bundles and the maximum modulus principle

Harmonic functions on subsets of Rn have many nice properties. Among these
is the maximum principle: A harmonic function D→ R attaining a maximum or
minimum on the interior of D must be constant. Similarly, a holomorphic function
attaining its maximum modulus on the interior of its domain is constant. Such a



3.1 harmonicity 38

result does not hold in general for harmonic cochains on sheaves, but something
analogous does work for O(n)-bundles.

Lemma 3.1.1. Let F be an O(n)-bundle on a cell complex X, with constant vertex weights
αv = 1 and arbitrary edge weights αe (as discussed in Section 1.10). If x ∈ C0(X;F) is
harmonic at a vertex v, then

xv =
1

dv

∑
u,vPe
u6=v

F∗vPeFuPexu,

where dv =
∑
vPe‖FvPe‖2 =

∑
vPe α

2
e.

Proof. This is a simple consequence of the block structure of the sheaf Laplacian. If
x is harmonic at v, (LFx)v = 0. Evaluating the Laplacian at x, we get

0 =
∑
vPe

F∗vPeFvPexv −
∑
u,vPe
u 6=v

F∗vPeFuPexu.

Because F is an O(n)-bundle, we have F∗vPeFvPe =
∑
vPe‖FvPe‖2 idF(v) =

dv idF(v). Rearranging terms yields the formula.

Theorem 3.1.1 (Maximum modulus principle). Let F be an O(n)-bundle on a cell
complex X, with αv = 1 for all 0-cells v. Suppose B is a thin subcomplex of X, i. e.one
such that X \ st(B) is connected, and every 0-cell of B is incident to a cell not in B. If
x ∈ C0(X;F) is harmonic on X \B and attains its maximum stalkwise norm at a vertex in
X \B, then it has constant stalkwise norm.

Proof. Suppose that v ∈ X \B is a vertex for which ‖xv‖ > ‖xu‖ for all 0-cells u ∈ X.
Then we have (using the lemma):

‖xv‖ =
1

dv
‖
∑
u,vPe
u 6=v

F∗vPeFuPexu‖ 6
1

dv

∑
u,vPe
u 6=v

‖F∗vPeFuPexu‖

=
1

dv

∑
u,vPe
u6=v

α2e‖xu‖ 6
1

dv

∑
vP1 e

α2e‖xv‖ = ‖xv‖.

Equality therefore holds throughout, which, because ‖xv‖ is maximal, forces ‖xv‖ =
‖xu‖ for all neighbors u of v. Since X \ st(B) is connected, this local constancy now
propagates across all vertices of X, including those of B, since every vertex of B is
adjacent to one not in B. Thus x has constant stalkwise norm.
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Corollary. Let B be a thin subcomplex of X, with F an O(n)-bundle on X as before. If
x ∈ C0(X;F) is harmonic on X \B, then it attains its maximum stalkwise norm on B.

We can weaken the thinness condition somewhat while preserving the truth
of the corollary. For instance, we might only require that X \ st(B) be connected.
Particularizing to the constant sheaf (which is an O(1)-bundle), we get a slightly
weaker version of a well-known result discussed in [Sun08], which does not require
taking norms. One might also view this result as generalizing the fact that sections
of O(n)-bundles have constant norm, since this corresponds to the choice B = ∅.

3.2 effective resistance

The relationship between graph Laplacians and the analysis of electrical networks
is well established. If we consider a weighted graph G as a circuit of resistors with
conductivities given by the edge weights, the Laplacian of G becomes a map taking
node voltages to net current flow at each node. That is, if x is a vector of voltages at
nodes of G, LGx is a vector representing the induced net current flowing into or out
of each node. The Laplacian quadratic form 〈x,LGx〉measures the power dissipated
in the circuit for a given voltage distribution x. Conversely, the (Moore-Penrose)
pseudoinverse L†G is a map from current flows to voltage distributions. (There is
an indeterminacy here; by definition, the pseudoinverse will choose the voltage
distribution which averages to zero.)

We can break this relationship down into finer pieces. Consider the dual vector
spaces Ck(G; R) and Ck(G; R). Elements of Ck represent voltages or potential dif-
ferences; elements of Ck represent currents. The coboundary map δ : C0(G; R)→
C1(G; R) takes a voltage distribution on nodes and computes the potential dif-
ference over each edge of G. The boundary map ∂ : C1(G; R) → C0(G; R) takes
currents on edges and calculates the net current flow into or out of each vertex. The
natural pairing C1 ⊗C1 → R calculates power dissipation: it multiplies current by
voltage on each edge. Ohm’s law gives an isomorphism R : C1(G; R)→ C1(G; R),
saying that current on each edge is proportional to voltage over each edge, with
the resistance being the constant of proportionality. This isomorphism induces an
inner product on C1 and C1, giving the familiar formulas P = I2R = V2/R. The
Laplacian of G may then be seen as the map L = ∂ ◦ R−1 ◦ δ from C0(G; R) to
C0(G; R). The pairing 〈x,LGx〉 is then equal to 〈δx, δx〉, which sums V2/R for each
edge, computing power dissipation.

Kirchoff’s laws imply that if we fix certain nodes of a circuit to given voltages
and leave the others free, the net current flow on the free nodes is zero; that is,
LGx = 0 on internal nodes. This is precisely the equation for harmonic extension
on a graph. By the dual formulation in terms of energy minimization, a circuit
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with voltage boundary conditions assumes the current flow that minimizes total
power dissipation. The same holds for current boundary conditions.

A common tool in circuit analysis is to reduce the relationship between two
nodes to an equivalent circuit. In the case of resistive networks, one may replace the
entire network by a single resistor between the two nodes of interest. The resistance
of this resistor is the effective resistance between the two nodes.

We can calculate the effective resistance between two circuit nodes by using either
voltage boundary conditions or current boundary conditions. The pseudoinverse
of LG computes the map from current inputs and outputs to voltage distributions.
We choose two vertices u and v, and let y be a current distribution with yu = −1,
yv = 1, and yw = 0 for any other vertex. Then L

†
Gy is a voltage distribution

on the nodes of G. In particular, the potential difference between u and v is
(L†Gy)v − (L†Gy)u = 〈y,L†Gy〉. Since the current flowing between u and v is 1, this
voltage is equal to the effective resistance between the two nodes, i. e.the constant
of proportionality between current and voltage.

Conversely, we can set a boundary condition x|B on B = {u, v} with xu = 0 and
xv = 1, and extend it to a cochain x harmonic on G \ B. This amounts to finding
the voltage distribution that satisfies Kirchoff’s voltage law on U. Then LGx is zero
outside of B, and at u and v it contains a current flow. Thus, 〈x,LGx〉 is the net
current flow into v, and since the voltage difference between u and v is 1, this is
equal to the conductance (reciprocal of the resistance) between the two nodes.

These two dual calculations bifurcate further when we extend them to sheaves.
A generalization of the current boundary conditions gives us an initial definition
of effective resistance for cosheaves. Of course, this definition can be extended to
sheaves by duality.

Definition 3.2.1 (Effective resistance). Let F̂ be a weighted cosheaf on a complex X,
and a,b ∈ ker∂k = Zk(X; F̂) homologous k-cycles. The effective resistance between
a and b is

Reff(a,b) = min
c∈Ck+1(X;F̂)

‖c‖ s.t. ∂c = b− a.

One may think of this as the `2 size of the minimal witness that a and b are in
fact homologous.

Proposition 3.2.1. For any homologous a,b ∈ Zk(X; F̂), Reff(a,b) = 〈b−a, (∆k+)
†
F̂
(b−

a)〉.

Proof. Since (∆k+)F̂ = ∂k+1∂
∗
k+1, a standard fact about the Moore-Penrose pseu-

doinverse implies that (∆k+)
†
F̂
= (∂†k+1)

∗∂†k+1. Therefore,

〈b− a, (∆k+)
†
F̂
(b− a)〉 = 〈∂†k+1(b− a),∂

†
k+1(b− a)〉 = ‖∂

†
k+1(b− a)‖

2.
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By the least squares property of the pseudoinverse, if b−a ∈ im∂k+1, ∂†k+1(b−a)
is the c of smallest norm such that ∂k+1c = b− a.

The characteristic case is when a and b are each supported on distinct cells. In
dimension zero, we think of a as being an F̂-valued current flow into a vertex and
b as its corresponding outwards flow. The effective resistance is a measure of the
total amount of current flow (as measured by the `2 norm on each edge) in the
graph induced by this input-output flow. This is why we require a and b to be
homologous: current must be conserved.

When F̂ is a weighted constant cosheaf R on a graph, this reduces exactly to
effective resistance for an electrical network. This is because a 0-chain supported on
a vertex v has a canonical corresponding 0-chain supported on any other vertex u, so
to compute the effective resistance between u and v we consider indicator cochains
supported on u and v. For a general cosheaf, we need to allow for nonconstant
and nonunique homologous extensions. However, in the case of a matrix-weighted
graph, we again have a canonical pairing of 0-chains supported on individual
vertices. As a result, we can produce an analogue of the effective resistance between
vertices for such a cosheaf, letting Reff(u, v) = L†[u,u] + L†[u, v] − 2L†[u, v]. This is
the matrix representing the quadratic form Q(x) = Reff(xu, xv), where xu and xv
have the same value over different vertices.

The cosheaf effective resistance as defined only depends on the difference b− a
of the cochains, so it is really a quadratic form on Zk(X; F̂), represented by the
matrix (∆k+)

†
F̂

. Restricting to chains supported on a subcomplex amounts to taking

a principal submatrix of (∆k+)
†
F̂

. In particular, in dimension zero, if the support is

a pair of vertices, we may think of (∆0+)
†
F̂
[{u, v}, {u, v}] as describing the effective

resistance between the vertices u and v. This matrix represents a quadratic form
calculating the power dissipation if a given current enters one vertex and leaves
the other.

The calculation of effective conductance using voltage boundary conditions
also generalizes to sheaves. However, we need to choose a particular boundary
subcomplex.

Definition 3.2.2. Let F be a sheaf on a complex X, with B ⊆ X a subcomplex. The
effective conductance of a cochain xB ∈ Ck(B;F) is

min
x∈Ck(X;F)

‖δkx‖2

s.t. x|B = xB

We denote the effective conductance Geff(xB).
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This is precisely the optimization problem for harmonic extension, with the full
Laplacian replaced with the up-Laplacian. If we restrict to xB ∈ (Bk−1(X;F))⊥,
these two problems are equivalent. (This restriction corresponds to our restriction to
Zk(X; F̂) for cosheaf effective resistance.) Effective conductance is a quadratic form
on Ck(B;F). It contains the same information as the effective resistance quadratic
form on Ck(B;F∗).

Proposition 3.2.2. Let F be a sheaf on a complex X, with F∗ its dual cosheaf, and B ⊆ X
a boundary subcomplex. The matrix representing the effective conductance quadratic form
on Bk(B;F)⊥ is the (pseudo)inverse of the matrix representing the effective resistance
quadratic form on Zk(B;F∗).

Proof. Note that Bk(B;F)⊥ ' Zk(B;F∗) since the two chain complexes are adjoints
of each other. For xB ∈ Bk(B;F)⊥, the harmonic extension to U is

xU = −(∆k+)F[U,U]†(∆k+)F[U,B]xB,

and hence its norm is

〈xB, (∆k+)F[B,B]xB〉− 〈(∆k+)F[U,B]xB, (∆k+)F[U,U]†(∆k+)F[U,B]xB〉.

Thus the matrix representing effective conductance on B is

Geff(B) = (∆k+)F[B,B] − (∆k+)F[B,U](∆k+)F[U,U]†(∆k+)F[U,B],

the Schur complement of (∆k+)F[U,U]. Conversely, the effective resistance ma-
trix is (∆k+)

†
F[U,U]. But a submatrix of the pseudoinverse is the inverse of the

corresponding Schur complement.

A particularly nice representation exists for the effective resistance matrix cor-
responding to the boundary of a single (k+ 1)-cell σ. A canonical subspace of
k-cycles supported on this boundary is im∂|σ. This allows us to construct a matrix
which we call the effective resistance of σ:

Reff(σ) = ∂
∗
σ(∆

k
+)
†
F̂
∂σ.

This defines a quadratic form on F̂(σ), which represents the importance of dif-
ferent subspaces of F̂(σ) in terms of generating current flows on ∂σ. If x ∈ F̂(σ)

generates a current flow on ∂σ which cannot be produced by any other chain, then
〈x,Reff(σ)x〉 = 〈x, x〉. Conversely, if some well-dispersed chain y also has ∂y = ∂x,
then 〈x,Reff(σ)x〉 6 〈y,y〉 � 〈x, x〉. This property of effective resistance plays an
important role in enabling sparsification algorithms for graphs, complexes, and
sheaves, as will be discussed in Chapter 5.
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3.3 identifying sheaf laplacians

Laplacians of weighted graphs are simple to identify: they are the symmetric matri-
ces with nonnegative diagonal entries, nonpositive off-diagonal entries, and row (or
column) sums zero. This characterization determines the set of graph Laplacians
as a convex cone in the space of symmetric matrices. A similar characterization for
Laplacians of sheaves on graphs requires deeper investigation. Consider the case of
sheaves with fixed-dimensional vertex stalks and edge stalks of arbitrary dimension.
(This indeterminacy of edge stalks is reasonable since, as discussed in Section 1.7.1,
we cannot identify edge stalk dimensions from a sheaf Laplacian.) The coboundary
matrix of such a sheaf has a block structure determined by the decomposition of
C0 and C1 into direct sums of stalks. As a result of the underlying graph structure,
every block row of δ has at most two nonzero blocks. In this situation, we say that
δ is 2-block row sparse.

The question of the structure of sheaf Laplacians then boils down to the question
of the properties of matrices δ∗δ, where δ is 2-block row sparse. When vertex stalks
are of dimension 1, this was studied by Boman et al. [Bom+05], who called such
matrices factor width two. Their main result is that a matrix L has factor width two if
and only if it is generalized diagonally dominant: there exists some positive diagonal
matrix D such that

(DLD)ii >
∑
i 6=j

∣∣(DLD)ij
∣∣

for all i. One direction of the proof is a special case of Proposition 3.3.1, while the
other direction involves showing that all factor-width two matrices are symmetric
positive definite H-matrices. An H-matrix is a matrix A whose comparison matrix
M(A), given by changing signs so that all diagonal elements are positive and all
off-diagonal elements are negative, is an M-matrix. A matrix A is an M-matrix if
A = sI−B for some nonnegative matrix B and s larger than the spectral radius of
B.

Definition 3.3.1. Let L be a symmetric block matrix. We say that L has block factor
width two if there exists a matrix B with the same block structure as L on its columns
which is 2-block row sparse, and L = BTB.

The analogous notion of diagonal dominance takes a little more to develop. Recall
that the absolute value of a matrix A is the symmetric positive semidefinite matrix
|A| =

√
AAT . This construction is useful in connection with the polar decomposition

A = |A|U, where U is a unitary matrix.
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Definition 3.3.2. A symmetric block matrix L is block diagonally dominant if

Lii −
∑
j6=i

∣∣Lij∣∣
is positive semidefinite for all i. (In particular, note that this requires that all
diagonal blocks be positive semidefinite.)

Proposition 3.3.1. If L is symmetric and block diagonally dominant then it has a factoriza-
tion of block width two, i. e.L = BTB where the block rows of B have at most two nonzero
blocks.

Proof. Write Lij = UijΣijV
T
ij for i < j via the singular value decomposition. We

use the compact form of the SVD, where Σ is a square diagonal matrix and U
and V have the same number of columns. Then

∣∣Lij∣∣ = UijΣijU
T
ij for i < j and∣∣Lij∣∣ = VijΣijVTij for i > j. Let

Cij =
[
· · · Σ1/2ij U

T
ij · · · Σ

1/2
ij V

T
ij · · ·

]
for i < j. Note that

CTijCij =



...
...

· · · UijΣijUTij · · · UijΣijVTij · · ·
...

...

· · · VijΣijU
T
ij · · · VijΣijV

T
ij · · ·

...
...


=



...
...

· · ·
∣∣Lij∣∣ · · · Lij · · ·

...
...

· · · Lji · · ·
∣∣Lji∣∣ · · ·

...
...


.

Let Di =
[
· · ·

√
Lii −

∑
i 6=j
∣∣Lij∣∣ · · ·], noting that this exists by block diagonal

dominance. Then

DiD
T
i =


...

· · · Lii −
∑
i 6=j
∣∣Lij∣∣ · · ·

...

 .

We then let the matrix B be the vertical concatenation of the matrices Cij and
the matrices Di. Then a quick computation shows that BTB =

∑
i<jC

T
ijCij +∑

iD
T
iDi = L.

We will say that L is scaled block diagonally dominant if there exists an invert-
ible block diagonal matrix D such that DTLD is block diagonally dominant. We
therefore have the following corollary:
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Corollary. If L is symmetric and scaled block diagonally dominant, then it has a factoriza-
tion of block width two.

Proof. If DLDT = BTB is a factorization of block width two, L = (BD−1)TBD−1 is
a factorization of L of block width two.

When we interpret L as a degree-0 sheaf Laplacian, the scaling D corresponds to
a change of basis and inner product for vertex stalks.

A similar but more restrictive definition was made by Kyng et al. [Kyn+16]
as a generalization of connection Laplacians. Their definition of block diagonal
dominance requires that

‖Lii‖ >
∑
i 6=j
‖Lij‖

for all i. The authors showed that all such matrices could be written as a sum
BTB+C, where B is a ‘unitary vertex-edge transfer matrix’ (the coboundary matrix
of a weighted U(n)-bundle on a multigraph) and C is a block diagonal matrix
with positive semidefinite blocks. We will call such matrices block norm diagonally
dominant. A simple corollary of this result is then that scaled block norm diagonally
dominant matrices are sheaf Laplacians.

However, there are sheaf Laplacians which are not block norm diagonally domi-
nant. Consider, for instance, Laplacians of matrix weighted graphs with weights
that are not full rank. Unless the kernels of the weights align in very precise ways,
the sum of norms of weights will be greater than the norm of the sum of weights.

Take as a concrete example the sheaf in Figure 3.1, where vertex stalks are R2,
edge stalks are R, and the restriction maps ρi are given by the matrices

ρ1 =
[
2 0

]
, ρ2 =

[√
3 −1

]
, ρ3 =

[√
3 1

]
.

The Laplacian of this sheaf is

LF =



6 0 0 0 −3 −
√
3 −3

√
3

0 6 0 −4 −
√
3 −1

√
3 −1

0 0 6 0 −3
√
3 −3 −

√
3

0 −4 0 6
√
3 −1 −

√
3 −1

−3 −
√
3 −3

√
3 6 0 0 0

−
√
3 −1

√
3 −1 0 6 0 −4

−3
√
3 −3 −

√
3 0 0 6 0

√
3 −1 −

√
3 −1 0 −4 0 6


.
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Figure 3.1: A sheaf whose Laplacian is not block norm diagonally dominant.

The norms of the 2× 2 off-diagonal blocks on each row are all 4, for a total sum
of 12, but the norm of the corresponding diagonal block is 6. On the other hand,
this matrix has block row sums 0, so it is clearly block diagonally dominant in our
weaker sense.

3.3.1 Identifying Laplacians for other types of sheaves

Laplacians of O(n)-bundles and matrix-weighted graphs are much simpler to
identify than arbitrary sheaf Laplacians. This is in part because we assume a
standard basis for vertex stalks, which restricts the properties of the corresponding
matrices further.

Proposition 3.3.2. A symmetric matrix L with n×n blocks is the degree-0 Laplacian of
an O(n)-bundle on a simple graph with constant vertex weights αv if and only if

1. its diagonal blocks are scalar multiples of the identity matrix

2. its nonzero off-diagonal blocks are scalar multiples of orthogonal matrices, and

3. for each block row i, ‖Lii‖ =
∑
j6=i‖Lij‖.

Proof. Suppose L is the degree-0 Laplacian of an O(n)-bundle F. Then Lii =∑
iPe F

∗
iPeFiPe =

∑
iPe α

2
eI, and Lij = F∗iPeFjPe = α

2
eρij, where e is the edge
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between vertices i and j and ρij ∈ O(n). These blocks then clearly satisfy conditions
1–3.

Conversely, if L is a block matrix satisfying these conditions, let G be the graph
determined by the block sparsity pattern of L. We will construct an O(n)-bundle
F on G whose Laplacian is L. If e is the edge between i and j, with i < j, let
FiPe = ‖Lij‖1/2I and FjPe = ‖Lij‖−1/2Lij. Then F is an O(n)-bundle with edge
weights αe = ‖Lij‖1/2 and (LF)ij = Lij. Further, (LF)ii =

∑
j6=i‖Lij‖I, which is

equal to Lii by properties 2 and 3.

Allowing vertex weights to vary amounts to relaxing this condition to a scaled
version: there must be some diagonal matrix D whose blocks are scalar multiples
of the identity such that DLD satisfies the conditions for Proposition 3.3.2.

The characterization of Laplacians of matrix-weighted graphs is even simpler,
and closer to the characterization of weighted graph Laplacians.

Proposition 3.3.3. A symmetric matrix L with n×n blocks is the Laplacian of a matrix-
weighted graph if and only if

1. its diagonal blocks are positive semidefinite matrices

2. its off-diagonal blocks are negative semidefinite matrices, and

3. for each block row i,
∑
j Lij = 0.

These conditions are almost automatic: letting Wij = −Lij gives the structure of
a matrix-weighted graph.

3.3.2 Cones of sheaf Laplacians

Once we pick dimensions for vertex stalks, the set of matrices which arise as
degree-0 sheaf Laplacians forms a convex cone in the space of symmetric matrices.
From the definition LF = δ∗Fδ, we can write

LF =
∑
e

δ∗eδe :=
∑
e

Le,

where δe is the map C0(X;F) → F(e) given by the corresponding row of δF.
Since we have only fixed dimensions of vertex stalks, we may take dimF(e)

as large as we want. In particular, for an edge e between vertices u and v, if
dimF(e) > dimF(u) + dimF(v), Le can be any positive semidefinite matrix with
the appropriate sparsity pattern. (That is, Le[a,b] 6= 0 if and only if a,b ∈ {u, v}.) If
LF and LG are sheaf Laplacians with the same vertex stalk dimensions, we have

LF + LG =
∑
e

(Le)F + (Le)G =
∑
e

(Le)F+G.
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Therefore, the sum of two sheaf Laplacians is a sheaf Laplacian, and a positive
scalar multiple of a sheaf Laplacian is also a sheaf Laplacian, so sheaf Laplacians
form a convex cone.

Laplacians of matrix-weighted graphs also form a convex cone. This is a straight-
forward consequence of their characterization in Proposition 3.3.3. A positive scalar
multiple of a matrix-weighted Laplacian clearly satisfies all three conditions. Since
the sum of positive semidefinite matrices is positive semidefinite, conditions 1 and
2 are satisfied for positive linear combinations of matrix-weighted Laplacians. But
condition 3 is a linear condition, and hence is satisfied by any linear combination
of matrix-weighted Laplacians.

Connection Laplacians (those corresponding to O(n)-bundles) do not form a
convex cone. This is easy to see because in general the sum of two orthogonal
matrices is not an orthogonal matrix. However, they generate a proper subcone of
the cone of sheaf Laplacians. To characterize this cone precisely, we will define an
auxiliary notion associated with a block norm diagonally dominant matrix L.

Definition 3.3.3. Let L be a block norm diagonally dominant matrix with n× n
blocks. The degree vector of L is the vector d with entries di = ‖Lii‖. The excess
degree vector of L is the vector de with entries dei = di −

∑
i 6=j‖Lij‖.

Proposition 3.3.4. A matrix L with n× n blocks is a positive linear combination of
degree-0 Laplacians of O(n)-bundles if and only if the following conditions are satisfied:

1. L is block norm diagonally dominant.

2. The diagonal blocks of L are positive scalar multiples of the identity.

3. The excess degree vector de of L is a positive linear combination of indicator vectors
on sets of cardinality 2.

Proof. The “only if” direction is straightforward, since all three conditions are satis-
fied by connection Laplacians and preserved under positive linear combinations.
The only point of difficulty is to see that condition 3 is preserved under positive
linear combinations. But this is straightforwardly true for combinations of connec-
tion Laplacians on graphs with a single edge, and every connection Laplacian is a
sum of connection Laplacians corresponding to a graph with a single edge.

For the reverse direction, we first observe that every real n×n matrix A of norm
at most 1 is a convex combination of orthogonal matrices.1 By the singular value
decomposition A = UΣVT we only need to show that this holds for every diagonal
matrix with entries in [0, 1]. It suffices to show, then, that every vector in [0, 1]n is a

1 This is in fact a special case of the Russo-Dye theorem [Gar84], which states that the closed convex
hull of the unitary elements of a C∗ algebra is equal to the closed unit ball.
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convex combination of vectors in {−1, 1}n. But this is clearly true, since these points
form the vertices of a cube in Rn containing [0, 1]n.

Now, suppose L satisfies conditions 1-3. We will first construct a Laplacian matrix
L̃ =
∑
e Le such that L− L̃ is block diagonal. For each edge e = i ∼ j, we construct

the matrix

Le =

[
‖Lij‖I Lij

Lji ‖Lij‖I

]
.

Since ‖Lij‖−1Lij has norm 1, it is a convex combination
∑
k λ
ij
k ρ
ij
k where ρijk is an

orthogonal matrix for each k. We can then write

Le = ‖Lij‖
∑
k

[
λ
ij
k I ρ

ij
k

(ρijk )
T λ

ij
k

]
.

Extending each matrix Le to the size of L by placing the nonzero blocks in the
positions corresponding to the edge e, we let L̃ =

∑
e Le. Note that L̃ satisfies

‖L̃ii‖ =
∑
i 6=j‖Lij‖, and that L− L̃ is zero except on diagonal blocks, which are

nonnegative scalar multiples of I. The vector of norms of diagonal blocks of L− L̃ is
precisely the excess degree vector of L. Choosing a decomposition de =

∑
αij1i,j,

we write L− L̃ = αijMij, with Mij constructed in the same way as the matrices Le,
but by choosing orthogonal matrices that sum to zero. The matrices Me are also
positive linear combinations of connection Laplacians, so L =

∑
e Le +

∑
ijMij is

a positive linear combination of connection Laplacians.

3.4 kron reduction

Kron reduction is one of many names2 given to the process of reducing an electrical
network to an equivalent one on a given set of terminals. If a set U of nodes are
left unconnected to the outside world (and hence obey Kirchoff’s laws) we may
view the circuit as a black box with only the remaining nodes B = G \U exposed.
When we apply voltages xB to these terminals, the remaining parameters will be
determined by harmonic extension. As a result, the induced current flow at the
terminals in B is equal to L[B,B]xB−L[B,U]xU, where xU is the harmonic extension
of xB to U. But we can compute xU = L[U,U]−1L[U,B]vU, so the linear operator

2 Other related terms include response matrix, star-mesh transform, equivalent network, and transfer
function. Moving slightly further afield, the analogous concept for partial differential equations with
boundary conditions is the Dirichlet-to-Neumann operator.
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mapping voltages on B to current flows on B is L[B,B] − L[B,U]L[U,U]−1L[U,B].
This is readily identified as the Schur complement L/L[U,U] of L[U,U] in L.

Surprisingly, the resulting matrix LB = L/L[U,U] is again a graph Laplacian.
That is, the class of graph Laplacians is closed under Schur complements. The
question then arises: can we perform Kron reduction on sheaves? Equivalently: is
the class of sheaf Laplacians closed under Schur complements (with respect, of
course, to some B for which harmonic extension is unique)?

This question is somewhat ill-posed so far. Which class of sheaf Laplacians are
we talking about? What are the dimensions of stalks? As it turns out, the answer
depends on which classes of sheaf Laplacians we choose.

Proposition 3.4.1. If L is the degree 0 Laplacian of a sheaf with one-dimensional vertex
stalks R, then for any subset of vertices B with complement U, the Schur complement
L[B,B] − L[B,U]L[U,U]−1L[U,B] is also a sheaf Laplacian whenever L[U,U] is invertible.

Proof. Recall the characterization of sheaves with one-dimensional vertex stalks
from Section 3.3 as scaled diagonally dominant matrices. We first show that
diagonally dominant matrices with positive diagonal are closed under Schur
complement. These are equivalently the class of symmetric positive definite H-
matrices: those whose comparison matrices M(A), replacing diagonal elements with
their absolute values and off-diagonal elements with their negative absolute values,
can be written as sI−B for some nonnegative matrix B. But it is an established fact
that H-matrices and symmetric positive definite matrices are closed under Schur
complements [JS05], so their intersection is as well.

Now, if a class L of matrices is closed under Schur complements, so is its diagonal
scaling, consisting of matrices DLD for L ∈ L and D invertible and diagonal. This
is for the simple reason that

(DLD)[B,B] − (DLD)[B,U](DLD)[U,U]−1(DLD)[U,B]

= DBL[B,B]DB −DBL[B,U]D|UD|−1U L[U,U]−1D|−1U DUL[U,B]DB
= D|B

(
L[B,B] − L[B,U]L[U,U]−1L[U,B]

)
D|B

Thus, the class of scaled diagonally dominant matrices is closed under Schur
complements, and hence Kron reduction can be applied to sheaves with all vertex
stalks R.

However, sheaves whose vertex stalk dimensions vary can fail to have Kron
reductions. For instance, the sheaf over K1,3 in Figure 3.2 does not reduce to a
sheaf on any graph on the three outer vertices. To see this, note that the space of
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Figure 3.2: A sheaf which does not admit a Kron reduction.

global sections is two dimensional, and on the boundary vertices is spanned by the
vectors

x1 =

11
0

 , x2 =

10
1

 .

Any graph on the three boundary vertices is a subgraph of K3, and hence a sheaf
on such a graph can be seen as a sheaf on K3, so we consider any sheaf G on K3
with vertex stalks R. If x1 is a section of G, we must have Gv1Pe13 = 0, where e13 is
the edge between v1 and v3. Similarly, Gv2Pe23 = 0. Further, if x2 is also a section,
we must have Gv1Pe12 = 0 and Gv3Pe23 = 0. But now because x1 is a section, we
must have Gv2Pe121 = Gv1Pe121 = 0, and similarly Gv3Pe131=Gv1Pe131=0

, so all
restriction maps are zero, giving G a 3-dimensional space of global sections.

Even sheaves with constant-dimensional vertex stalks are not closed under
Schur complements. Consider the Laplacian of a matrix-weighted graph, with a
set of boundary vertices B. The question is whether the matrix LB = L[B,B] −
L[B,S]L[S,S]−1L[S,B] is the Laplacian of some sheaf. The kernel of LB must include
the space of constant cochains on B, since these extend with zero energy to the rest
of the graph. Thus, if LB is the Laplacian of a sheaf, its off-diagonal blocks must be
symmetric, since this sheaf must have restriction maps of the form FvPe = FuPe.
However, the off-diagonal blocks of LB are L[u, v] −L[u,S]L[S,S]−1L[S, v], and while
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L[u, v] is symmetric, L[u,S]L[S,S]−1L[S, v] is not in general symmetric. (They are
only guaranteed to be symmetric if L[u,S] = L[v,S].)

On the other hand, the block norm diagonally dominant matrices of Section 3.3
are closed under Schur complements, as was shown in [Kyn+16]. As a result, one
may perform Kron reduction on O(n)-bundles. The output is not necessarily a
bundle, but will be representable as a cellular sheaf. This can be seen as a process
yielding an O(n)-bundle on a multigraph with loops.

One way to interpret these results is that sheaves are more interesting than
electrical circuits—they have interesting internal behavior that cannot always be
predicted from their boundaries. Adding more nodes can increase the expressive
power of a system described by a sheaf, even if those nodes are never observed.



4
S P E C T R A O F S H E A F L A P L A C I A N S

Graph Laplacians are one of the principal points of interest in spectral graph theory,
which seeks to understand the relationship between combinatorial properties of
graphs and the eigenvalues of their associated matrices. Many results about the
spectra of graph Laplacians have natural analogues for the spectra of Laplacians of
sheaves on cell complexes. Often the difficulty in generalizing lies not in proving
the generalized statement, but finding the correct generalization of graph-theoretic
concepts to cellular sheaves.

4.1 preliminaries

An important tool in the spectral analysis of Laplacian matrices is the Courant-
Fischer-Weyl theorem. This is a variational characterization of the eigenvalues and
eigenvectors of a self-adjoint operator in terms of the Rayleigh quotient.

Definition 4.1.1 (Rayleigh quotient). Let A be a self-adjoint operator on a Hilbert
space V, with x ∈ V. The Rayleigh quotient of x with respect to A is

RA(x) =
〈x,Ax〉
〈x, x〉

.

Theorem 4.1.1 (Courant-Fischer-Weyl). Let A be a self-adjoint operator on a finite-
dimensional Hilbert space V of dimension n. If λ1 6 λ2 6 · · · 6 λn are the eigenvalues of
A, then

λk = max
U6V

dimU=n−k+1

min
x∈U

RA(x) = min
U6V

dimU=k

max
x∈U

RA(x).

Proof. Because A is self-adjoint, it is unitarily equivalent to a diagonal matrix, so
we may assume without loss of generality that A is diagonal, with diagonal entries
λ1 6 · · · 6 λn. Then

RA(x) =

∑
λix

2
i∑

x2i
.

53
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For a given U 6 V of dimension n− k+ 1, the intersection of U with the span of
the first k basis vectors is nonempty, so minx∈U RA(x) 6 λk. Similarly, for U of
dimension k, maxx∈U RA(x) > λk. But it is straightforward to exhibit subspaces U
for which the Rayleigh quotients attain these bounds exactly—simply take spans
of basis vectors. This establishes the theorem.

This minimax characterization of eigenvalues allows us to say things about the
spectrum of a Laplacian matrix ∆ in terms of its associated quadratic form 〈x,∆x〉.

A couple of basic results about the spectra of the operators ∆k follow directly
from discrete Hodge theory:

Proposition 4.1.1. The nonzero elements of the spectrum of ∆k are given by the disjoint
union of the nonzero elements of the spectra of ∆k+ and ∆k−.

Proof. The Hodge decomposition of Ck(X;F) (Theorem 1.6.1) says that it is the
orthogonal direct sum of ker∆k, im∆k−, and im∆k+. Since ∆k+ restricts to zero on
im∆k− and ∆k− restricts to zero on im∆k+, and both restrict to zero on ker∆k, we
see that ∆k is the orthogonal direct sum 0|ker∆k ⊕∆k+|im∆k+ ⊕∆

k
−|im∆k−

. As a result,
the spectrum of ∆k is the union of the spectra of these operators.

Proposition 4.1.2. The nonzero eigenvalues of ∆k+ and ∆k+1− are the same.

Proof. Take the singular value decomposition δk = UΣV∗. Since ∆k+ = (δk)∗δk and
∆k+1− = δk(δk)∗, we have unitary diagonalizations ∆k+ = VΣ∗ΣV∗ and ∆k+1− =

UΣΣ∗U∗. This implies that the eigenvalues of ∆k+ are the diagonal entries of Σ∗Σ,
and the eigenvalues of ∆k+1− are the diagonal entries of ΣΣ∗. The nonzero entries
of these matrices are the same.

We can extract the eigenvectors of ∆k+1− from the eigenvectors of ∆k+. If v is an
eigenvector of ∆k+, δkv is an eigenvector of ∆k−1− , since ∆k+1− δkv = δk∆k+v = λδ

kv.

Proposition 4.1.3. Suppose F is a normalized sheaf on a simplicial complex. Then the
eigenvalues of the degree k up-Laplacian ∆k+ of F are bounded above by k+ 2.

Proof. The Courant-Fischer-Weyl theorem implies that the largest eigenvalue of ∆k+
is equal to

max
x∈Ck(X;F)

〈x,∆k+x〉
〈x, x〉
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By the normalization condition on F, we can write the denominator as 〈x, x〉 =∑
dimσ=k

〈δkxσ, δkxσ〉, giving us the equivalent formula

max
x⊥kerδk

〈δkx, δkx〉∑
dimσ=k

〈δkxσ, δkxσ〉

= max
x⊥kerδk

∑
dimτ=k+1

∑
σ,σ ′P1 τ

[σ : τ][σ ′ : τ]〈FσPτxσ,Fσ ′Pτxσ ′〉∑
dimσ=k

∑
σP1 τ

〈FσPτxσ,FσPτxσ〉

The Cauchy-Schwarz inequality implies that for σ 6= σ ′,

[σ : τ][σ ′ : τ]〈FσPτxσ,Fσ ′Pτxσ ′〉 6 ‖FσPτxσ‖‖Fσ ′Pτxσ ′‖

6
1

2

(
‖FσPτxσ‖2 + ‖Fσ ′Pτxσ ′‖2

)
.

If we substitute this in the inner sum of the numerator of the Rayleigh quotient,
we get a bound of∑

σP1 τ

‖FσPτxσ‖2 +
1

2

∑
σ 6=σ ′P1 τ

(
‖FσPτxσ‖2 + ‖Fσ ′Pτxσ ′‖2

)
.

Counting up all the terms of each type, we find that this is equal to

(k+ 2)
∑
σP1 τ

‖FσPτxσ‖2.

Thus the Rayleigh quotient is bounded above by

max
x⊥kerδk

(k+ 2)
∑

dimτ=k+1

∑
σP1 τ

‖FσPτxσ‖2∑
dimτ=k+1

∑
σP1 τ

‖FσPτxσ‖2
= k+ 2.

This result is a generalization of a standard result about normalized graph
Laplacians and a result of Horak and Jost about normalized Hodge Laplacians of
simplicial complexes [HJ13]. The requirement that X be a simplicial complex is
critical. This stipulation means that each k-cell has k+ 1 faces, which allows us to
bound the sum in the numerator. In general, for a cell complex where each k-cell
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has at most b(k) faces, the spectrum of ∆k+ for a normalized sheaf is bounded
above by b(k+ 1). A similar result about spectra of normalized factor width k
matrices was given by Boman et al. [Bom+05], although their proof does not extend
to block matrices.

4.2 eigenvalue interlacing

Definition 4.2.1. Let A, B be n×n matrices with real eigenvalues. Let λ1 6 λ2 6
· · · 6 λn be the eigenvalues of A and µ1 6 µ2 6 · · · 6 µn be the eigenvalues of B.
Extend these values to all integers by letting λk = λ1 for k < 1 and λk = λn for
k > n.

We say the eigenvalues of A are (p,q)-interlaced with the eigenvalues of B if for
all k, λk−p 6 µk 6 λk+q.

Theorem 4.2.1. Let A and B be positive semidefinite matrices, with rankB = t. Then the
eigenvalues of A are (t, 0)-interlaced with the eigenvalues of A−B.

Proof. Let the eigenvalues of A − B be µ1 6 · · · 6 µn, and the eigenvalues of
A be λ1 6 · · · λn. We will use the Courant-Fischer-Weyl theorem to bound the
eigenvalues of A−B. Note that the Rayleigh quotient RA−B(x) is equal to RA(x) −
RB(x). We then have

µk = min
U6Rn

dimU=k

max
x∈U

(RA(x) − RB(x))

> min
U6Rn

dimU=k

max
x∈U∩kerB

RA(x)

> min
U6Rn

dimU=k−t

max
x∈U

RA(x) = λk−t.

The inequality in the third line comes by noting that dimU∩ kerB has dimension
at least k− t. The other side of the inequality is more straightforward:

λk = min
U6Rn

dimU=k

max
x∈U

RA(x)

> min
U6Rn

dimU=k

max
x∈U

(RA(x) − RB(x)) = µk.

The interlacing theorem gives results about the Laplacians of sheaves restricted
to a subcomplex. Consider a (k+ 1)-dimensional complex X with a subcomplex



4.2 eigenvalue interlacing 57

A ⊆ X which contains all cells of dimension 6 k. We take the pullback i∗F over the
inclusion map i : A→ X, and we compare the Laplacians ∆kF and ∆ki∗F.

Our goal is to derive an interlacing relationship between the eigenvalues of ∆kF
and ∆ki∗F. To do this, we need to know the rank of ∆kF − ∆ki∗F. By interpreting
this matrix as the Hodge Laplacian of another sheaf, we have a homological
characterization. Let G be the sheaf on X with the same stalks as F but all restriction
maps between cells in A set to zero. Then it is straightforward to check that
∆kG = ∆kF −∆ki∗F, and applying Theorem 4.2.1 yields the following result:

Proposition 4.2.1. The eigenvalues of ∆kF are (t, 0)-interlaced with the eigenvalues of
∆ki∗F, where t = codimHk(X;G) = dimCk(X;F) − dimHk(X;G).

Results about eigenvalue interlacing in spectral graph theory are typically stated
in terms of the removal of an edge or vertex of a graph, but the formulation in terms
of subcomplexes is more general, and allows a nice homological interpretation.
There are also interlacing results about the normalized graph Laplacian. This is
less straightforward to generalize to sheaves, since we have defined normalization
as a property of the sheaf itself rather than its Laplacian. There is in general no
simple relationship between the Laplacian of a cellular sheaf and the Laplacian
of its normalization. However, for a sheaf on a graph, we did derive a formula
similar to the one for the normalized graph Laplacian in Section 1.7.2. This gives
us a result about eigenvalues of normalizations of the restriction of a sheaf onto a
subcomplex.

Proposition 4.2.2. Suppose F is a normalized sheaf on a graph X, with A ⊆ X a subgraph.
Let ˜i∗F be the normalization of the sheaf i∗F. The eigenvalues of LF are (t, t)-interlaced
with the eigenvalues of L ˜i∗F, where t = codimH0(X;G).

Proof. The Laplacian L ˜i∗F written in terms of the same basis as LF is equal to
D

−1/2
i∗F Li∗FD

−1/2
i∗F , so that its Rayleigh quotient is

RL ˜i∗F
(x) =

〈x,D−1/2
i∗F Li∗FD

−1/2
i∗F x〉

〈x, x〉
=
〈y,Li∗Fy〉
〈y,Di∗Fy〉

=
〈y,LFy〉− 〈y,LGy〉
〈y,y〉− 〈y,DGy〉

.
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Letting λk be the kth largest eigenvalue of LF and µk the kth largest eigenvalue of
LN(i∗F), we have

µk = min
U6Rn

dimU=k

max
y∈U

〈y,LFy〉− 〈y,LGy〉
〈y,y〉− 〈y,DGy〉

> min
U6Rn

dimU=k

max
y∈U∩H0(X;G)

〈y,LFy〉
〈y,y〉− 〈y,DGy〉

> min
U6Rn

dimU=k

max
y∈U∩H0(X;G)

〈y,LFy〉
〈y,y〉

> min
U6Rn

dimU=k−t

max
y∈U

〈y,LFy〉
〈y,y〉

= λk−t

and

µk = max
U6Rn

dimUn−k+

min
y∈U

〈y,LFy〉− 〈y,LGy〉
〈y,y〉− 〈y,DGy〉

6 max
U6Rn

dimUn−k+

min
y∈U∩H0(X;G)

〈y,LFy〉
〈y,y〉− 〈y,DGy〉

6 max
U6Rn

dimUn−k+

min
y∈U∩H0(X;G)

〈y,LFy〉
〈y,y〉

6 max
U6Rn

dimUn−k−t+

min
y∈U

〈y,LFy〉
〈y,y〉

= λk+t.

4.3 morphisms

The existence of a sheaf morphism F → G does not in general give much informa-
tion about the spectra of the corresponding sheaf Laplacians. However, unitary
morphisms do offer some control over the relationships between sheaf Laplacians.

Proposition 4.3.1. Letϕ : F → G be a morphism of weighted sheaves on a regular cell com-
plex X. If ϕk+1 : Ck+1(X;F)→ Ck+1(X;G) is unitary, then (∆k+)F = (ϕk)∗(∆k+)Gϕ

k.

Proof. Since sheaf morphisms commute with the coboundary maps, we have

(δkF)
∗(ϕk+1)∗ϕk+1δkF = (ϕk)∗(δkG)

∗δkGϕ
k = (ϕk)∗(∆k+)Gϕ

k.



4.3 morphisms 59

As a result, if (ϕk+1)∗ϕk+1 = id, we have (∆k+)F = (ϕk)∗(∆k+)Gϕ
k, and this

condition holds if ϕk+1 is unitary.

Analogously, we also have

Proposition 4.3.2. Letϕ : F → G be a morphism of weighted sheaves on a regular cell com-
plex X. If ϕk−1 : Ck−1(X;F)→ Ck−1(X;G) is unitary, then (∆k−)F = (ϕk)∗(∆k−)Gϕ

k.

Thus, if both ϕk+1 and ϕk−1 are unitary, we have ∆kF = (ϕk)∗∆kG)ϕ
k. Even if

ϕk is not unitary, we have a bound

λmax(∆
k
F) 6 λmax(∆

k
G)‖ϕk‖2,

coming from the `2 operator norm. Of course, if ϕk is unitary, the spectra of the
two operators are identical.

Naturally, the direct sum of sheaves is spectrally well-behaved.

Proposition 4.3.3. Let F and G be sheaves on X. The Laplacians ∆kF⊕G naturally decom-
pose into an orthogonal direct sum ∆kF ⊕∆kG.

Proof. The complex of cochains C•(X;F⊕G) naturally decomposes into an orthogo-
nal direct sum C•(X;F)⊕C•(X;G). Since the coboundary decomposes with respect
to this direct sum, so do all the Laplacians.

In particular, this means that the spectrum of ∆kF⊕G is the disjoint union of the
spectra of ∆kF and ∆kG.

The tensor product of sheaves is much harder to get a spectral handle on.
Difficulties arise even in predicting the dimension of the space of global sections.
If F is an O(1)-bundle, then there exists a sheaf F−1 such that F⊗F−1 ' k. This
means that if F has no global sections, there are some sheaves G such that F⊗G has
global sections, while there are others for which it does not. Whether this happens
seems to be very difficult to predict purely from the Laplacian spectrum.

Another point of difficulty here is that the cochain complex of F⊗ G does not
decompose nicely into anything naturally acted on by the component coboundary
operators. That is, Ck(X;F⊗ G) is a direct sum of tensor products of stalks, and
direct sums do not distribute over tensor products.

More interesting results are possible when we investigate the effects of mor-
phisms of cell complexes and their associated sheaf operations.

Proposition 4.3.4. Let f : X→ Y be a locally injective cellular map. If F is a sheaf on X,
the degree-k up-Laplacian (∆k+)f∗F corresponding to f∗F on Y is unitarily equivalent to
the degree k coboundary Laplacian (∆k+)F of F.
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Proof. The morphism f induces a set of isometries fk : Ck(X;F) → Ck(Y; f∗F),
which are given on stalks by the inclusion fσ : F(σ)→ f∗F(f(σ)) =

⊕
f(τ)=f(σ) F(τ).

These stalkwise maps commute with the restriction maps of F and f∗F, so fk
commutes with the coboundary maps. Therefore,

(∆k+)f∗F = (δkf∗F)
∗δkf∗F = (δkf∗F)

∗f∗k+1fk+1δ
k
f∗F = f∗k(δ

k
F)
∗δkFfk = f∗k(∆

k
+)F.

Corollary. The sheaves F and f∗F are isospectral for the up-Laplacian.

Proposition 4.3.5. Let p : E→ X be a covering map of cell complexes, with F a sheaf on
X. Then for any k, the spectrum of any Laplacian of F is contained in the spectrum of the
corresponding Laplacian of p∗F.

Proof. There is a lifting map p∗ : C•(X;F) → C•(E;p∗F) which takes (xσ)σ∈X ∈
Ck(X;F) to (xp(τ))τ∈E ∈ Ck(E;p∗F). We will denote its adjoint (p∗)∗ by simply p;
this map is given by (p(x))σ =

∑
σ ′∈p−1(σ) xσ ′ . The map p∗ commutes with both δ

and δ∗. It commutes with δ because it commutes with every restriction map (just
like the isometries in the proof of Proposition 4.3.4). The commutativity with δ∗

relies on the fact that p is a covering map and the behavior of the pullback sheaf.
For y ∈ Ck(E;p∗F) and x ∈ Ck+1(X;F), we have

〈y, δ∗p∗x〉 = 〈δy,p∗x〉 =
∑

σ ′,τ ′∈E
σ ′P1 τ

′

[σ ′ : τ ′]〈p∗Fσ ′Pτ ′(yσ ′), (p∗x)τ ′〉

=
∑
σ,τ∈X
σP1 τ

[σ : τ]
∑

σ ′∈f−1(σ)

〈FσPτ(yσ ′), xτ〉

=
∑
σ,τ∈X
σP1 τ

[σ : τ]〈FσPτ(py)σ, xτ〉

= 〈δpy, x〉 = 〈y,p∗δ∗x〉

Suppose now that (∆k+)Fx = λx. Then (∆k+)p∗Fp
∗x = (δkp∗F)

∗δkp∗Fp
∗x = p∗(δkF)

∗δkFx =

p∗(∆k+)F = λp∗x, so λ is an eigenvalue of (∆k+)p∗F with eigenvector p∗x. A similar
argument holds for ∆k− and ∆k.

Pullbacks over other sorts of maps can also yield some control over the spectrum.
For instance, if we have a dimension-preserving map with uniform fiber sizes, we
can bound the smallest nontrivial eigenvalue:

Proposition 4.3.6. Suppose f : Y → X is a cellular map with dim f(σ) = dimσ for all
cells σ ∈ Y, and further, that for each cell σ of X of dimension d,

∣∣f−1(σ)∣∣ = `d is constant.
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If F is a weighted sheaf on X, with λ(F) the smallest nontrivial eigenvalue of (∆k+)F, then
λ(F) > `k

`k+1
(f∗F).

Proof. Let x be an eigenvector of (∆k+)F corresponding to λ(F). Since every fiber of
f is of the same size, the lifting map f∗k : Ck(X;F)→ Ck(Y; f∗F) preserves the inner
product up to a scaling. That is, 〈f∗y, f∗z〉 = `k〈y, z〉 for y, z ∈ Ck(X;F). As a result,
f∗x is orthogonal to f∗y for any y ∈ ker(∆k+)F. Therefore, we have

λ(F) =
〈δFx, δFx〉
〈x, x〉

=
`k〈f∗δFx, f∗δFx〉
`k+1〈f∗x, f∗x〉

=
`k〈δf∗Ff∗x, δf∗Ff∗x〉
`k+1〈f∗x, f∗x〉

>
`k
`k+1

λ(f∗F).

A covering map of complexes p : E → X may be equivalently thought of as
a fiber bundle over X with discrete stalks of size n, or a locally constant sheaf
with values in the category of sets. We can compose this locally constant sheaf
with the free vector space functor to get a sheaf on X; this sheaf is equivalent
to the sheaf p∗k. To understand better what happens to the spectrum of p∗F
for F a sheaf on X, note that by Proposition 4.3.4, this spectrum is the same as
that of p∗p∗F. It is straightforward to verify that p∗p∗F ' F⊗ p∗k. Further, p∗k
decomposes according to the representation of the structure group of the bundle
on kn. That is, if the representation has a direct sum decomposition, so does p∗k.
For instance, when n = 2, the structure group is Z/2 and the representation is
the canonical representation on k2, which decomposes into the direct sum of the
trivial representation and the sign representation. Thus p∗k ' k⊕ k̃, where k̃ is
an O(1)-bundle. The sign of each 1-cell corresponds to whether the fibers “switch
places” over that cell. Thus, the spectrum of p∗F is the union of the spectra of
F and F ⊗ k̃. For the case of a constant sheaf on a graph, we see that the “new
eigenvalues” of the cover are the eigenvalues of a signed graph, where the signing
corresponds to the cover. This fact, with less sheaf-theoretic cover, has been used to
great effect in understanding the spectrum of a double cover of a graph [BL06].

4.4 products

Definition 4.4.1. If F and G are sheaves on X and Y, respectively, their outer product
is the sheaf F� G = π∗XF⊗ π∗YG on X× Y.

Unraveling this definition reveals that (F � G)(σ× τ) = F(σ)⊗ F(τ) and (F �
G)σ×τPσ ′×τ ′ = FσPσ ′ ⊗ GτPτ ′ . If F and G are weighted, there is a clear canonical
weighting on F� G. This is the analogue for sheaves on graphs of the Cartesian
product of graphs.
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Proposition 4.4.1. If LF and LG are the degree-0 Laplacians of F and G, then the degree-0
Laplacian of F� G is LF�G = idC0(X;F)⊗LG + LF ⊗ idC0(Y;G).

Proof. The vector space C1(X× Y;F�G) has an orthogonal decomposition into two
subspaces: one generated by stalks F(v)⊗ G(e) with v a vertex of X and e an edge
of Y, and the other generated by stalks of the dual form F(e)⊗ G(v). This is an
isomorphism

C1(X× Y;F� G) ' (C0(X;F)⊗C1(Y;G))⊕ (C1(X;F)⊗C0(Y;G)).

The coboundary map of F� G is, with respect to this decomposition on C1, the
block matrix

δF�G =

[
idC0(X;F)⊗δG
δF ⊗ idC0(Y;G)

]
.

It is then straightforward to compute

LF�G = δ∗F�GδF�G = idC0(X;F)⊗δ∗GδG + δ∗FδF ⊗ idC0(Y;G)

= idC0(X;F)⊗LG + LF ⊗ idC0(Y;G) .

Corollary. The eigenvalues of LF�G are sums λ+ µ, where λ is an eigenvalue of LF and
µ is an eigenvalue of LG.

Proof. If LFvF = λvF and LGvG = µvG, then LF�GvF ⊗ vG = vF ⊗µvG+ λvF ⊗ vG =

(λ+ µ)vF ⊗ vG. Thus the spectrum of LF�G contains sums of the form λ+ µ. But
this operator acts on the vector space C0(X;F)⊗C0(Y;G), which has dimension
dim(C0(X;F))dim(C0(Y;G)), and we have exhibited this many eigenvectors with
the corresponding eigenvalues, so we have described the entire spectrum of LF�G.

The higher degree coboundary maps of F�G are more complicated. For instance,
in degree 1 we have

δ1F�G =


idC0(X;F)⊗δ1G 0

δ0F ⊗ idC1(Y;G) idC1(X;G)⊗δ0G
0 δ1F ⊗ idC0(Y;G)

 .
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This then implies that the degree-1 up-Laplacian is equal to[
idC0(X;F)⊗(∆1+)G + (∆0+)F ⊗ idC1(Y;G) (δ0F)

∗ ⊗ δ0G
δ0F ⊗ (δ0G)

∗ idC1(X;F)⊗(∆0+)G + (∆1+)F ⊗ idC0(Y;G)

]
.

The extra terms make the spectrum harder to compute. When X is a graph, (∆1+)F
and (∆1+)G are zero, and we can compute the spectrum of (∆1+)F�G. (Note that this
is not the zero matrix, since X× Y has 2-dimensional cells which are products of
1-dimensional cells.)

Proposition 4.4.2. Let X and Y be graphs, with X× Y a 2-dimensional cell complex, and
F and G sheaves on X and Y. If vF is an eigenvector of (∆0+)F with eigenvalue λ and vG
an eigenvector of (∆0+)G with eigenvalue µ, then the vector

vF�G =

√λ
µvF ⊗ δ

0
GvG√

µ
λδ
0
FvF ⊗ vG


is an eigenvector of (∆1+)F�G with eigenvalue λ+ µ.

Proof. We compute

(∆1+)F�GvF�G =

[
(∆0+)F ⊗ idC1(Y;G) (δ0F)

∗ ⊗ δ0G
δ0F ⊗ (δ0G)

∗ idC1(X;F)⊗(∆0+)G

]√λ
µvF ⊗ δ

0
GvG√

µ
λδ
0
FvF ⊗ vG


=

(√λ
µ +

√
µ
λ

)
λvF ⊗ δ0GvG(√

λ
µ +

√
µ
λ

)
µδ0FvF ⊗ vG

 = (λ+ µ)

√λ
µvF ⊗ δ

0
GvG√

µ
λδ
0
FvF ⊗ vG

 .

We can also get a similar result by recalling that the nonzero spectrum of
(δ1

F�G)
∗δ1

F�G is equal to the nonzero spectrum of δ1
F�G(δ

1
F�G)

∗. This second term
is easy to compute for X and Y graphs:

(∆2−)F�G = (∆1−)F ⊗ idC1(Y;G)+ idC1(X;G)⊗(∆1−)G.

But then we know that the nonzero eigenvalues of (∆1−)F are the same as those
of (∆0+)F, we get a correspondence between nonzero eigenvalues of (∆1+)F�G and
sums of nonzero eigenvalues of (∆0+)F and (∆0+)G.
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As we move to higher dimensions, we can decompose

Ck(X× Y;F� G) =

k⊕
i=0

Ci(X;F)⊗Ck−i(Y;G)

and the matrix of δk
F�G has progressively more blocks with more complex formulas,

preventing straightforward calculation of the Laplacian eigenvalues.
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S H E A F A P P R O X I M AT I O N S

If a cellular sheaf models some concrete physical system, it may be useful in
certain situations to be able to approximate this sheaf in some sense. This is
particularly interesting when we are designing a system whose complexity depends
on the complexity of an underlying sheaf. Constructing a simple approximation
would then mean a more efficient design. Here we will explore one notion of
approximation for cellular sheaves.

5.1 sheaf approximations

Definition 5.1.1. Let F be a sheaf on a regular cell complex X. A k-approximation of
F is a sheaf G on X together with a morphism a : F → G such that

1. a is an isomorphism on stalks over cells of dimension 6 k, and a surjection
on stalks over cells of dimension k+ 1

2. Hi(a) : Hi(X;F)→ Hi(X;G) is an isomorphism for i 6 k.

One motivation for this definition is its clear analogy to approximation of
spaces by weakly homotopy equivalent CW complexes. One way to prove that
every space Y is weakly homotopy equivalent to a CW complex is to construct a
sequence of skeleta Xk together with maps Xk → Y which induce isomorphisms
πi(X

k) → πi(Y) for i < k and are surjective for i = k. Using cohomology means
that the approximating maps will go in the other direction, and since we are
approximating not the space but an algebraic structure associated thereto, we can
control its behavior at individual points as well.

Another motivation is more concrete in nature. A cellular sheaf of vector spaces
represents a system of linear constraints for data on a space. The cohomology of
a sheaf represents classes of solutions to certain equations parameterized by the
space. If we are only interested in these constraints up to a certain dimension of
cell, we may be able to ignore significant amounts of information in our original
sheaf, simplifying computation and communication. The simplest example of this
is a 0-approximation of a sheaf F on a graph. A 0-approximation to F has the
same space of global sections as F, but may have significantly lower-dimensional
stalks over edges. If the graph represents a distributed system, this reduction in
dimension corresponds to a reduction in connection complexity.

65



5.1 sheaf approximations 66

Definition 5.1.1 ignores cells of dimension greater than k+1, so when considering
k-approximations we will assume without loss of generality that X is (k + 1)-
dimensional. Most of the difficulties in understanding sheaf approximations are
evident in the case k = 0, so we will focus on that case. For each 1-cell e with faces
u and v, a 0-approximation a : F → G defines a commuting diagram

F(v) G(v)

F(e) G(e)

F(u) G(u)

'

FvPe GvPe

ae

'

FuPe GuPe

The approximation G is determined up to isomorphism by the choice of G(e) and
ae for every edge. Since ae is surjective, G(e) ' F(e)/ kerae, so the structure
of G is determined by the choice of kerae for every e. Thus, we may think of a
0-approximation as being given by a choice of a subspace of F(e) to discard. A
similar characterization holds in higher dimensions: a k-approximation is given by
a choice of a subspace of F(σ) to discard for every (k+ 1)-cell σ.

The following result gives us some information about when an approximation
on a subcomplex extends to the entire complex, and can be used to glue together
approximations.

Proposition 5.1.1. Let F be a sheaf on a (k+ 1)-dimensional complex X, and let Y ⊆ X
be a subcomplex such that the induced map Hk(X;F) → Hk(Y;F) is an isomorphism.
If a : F → G is a morphism of sheaves on X which is an isomorphism on stalks over
cells of dimension 6 k, such that a|Y : F|Y → G|Y is a k-approximation and the map
Hk(X, Y;F) → Hk(X, Y;G) induced by the sheaf morphism a is an isomorphism, then
a : F → G is a k-approximation.

Proof. To show that a : F → G is a k-approximation, we only need to check
that Hka : Hk(X;F) → Hk(X;G) is an isomorphism. Consider the two long exact
sequences for relative sheaf cohomology of F and G. We have a commutative
diagram

Hk(X, Y;F) Hk(X;F) Hk(Y;F) 0

Hk(X, Y;G) Hk(X;G) Hk(Y;G) coker

0

'

'

Hka '
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where each row is exact. Because a is an isomorphism on k-dimensional stalks,
Hka must be injective, so we only need to show that Hka is surjective. But this
follows from applying the five lemma to this commutative diagram.

5.2 approximations to the constant sheaf

The first sheaf we will consider approximating is the constant sheaf. Consider
the constant sheaf V with stalk V on a graph G. If F is a 0-approximation to
V, it is isomorphic to a sheaf with vertex stalks V such that for every edge e
between vertices u and v, FuPe = FvPe. This is straightforward, since av defines
an isomorphism between V and F(v) for all v. For an edge e, we have the diagram

V V

V F(e)

V V

id

id FvPe

ae

id

id FuPe

which commutes if and only if FuPe = FvPe. This shows that degree-0 approxi-
mations to the constant sheaf are matrix-weighted graphs, with Wuv = F∗uPeFvPe.
However, they satisfy an additional constraint: they have no nonconstant global
sections. This constraint is nontrivial.

By the considerations for general approximations, F(e) ' V/ kerae. This sug-
gests that we might construct an approximation to V by choosing some Ke 6 V to
be the kernel of ae for each edge. If these kernels are chosen correctly, H0(G; V)

will be preserved. Choosing a collection {Ke} that produces an approximation to V

is a subtle problem, but there are some obvious constraints.

Proposition 5.2.1. If a collection {Ke} determine an approximation F to the constant
sheaf on a connected graph G, then for any set C of edges whose removal disconnects G,⋂
e∈C Ke = 0.

Proof. Suppose there exists some nonzero vector x ∈
⋂
e∈C Ke. Removing the set

of edges C separates G into at least two components. Pick a component G1, and
define the 0-cochain y by yv = x for v ∈ G1 and yv = 0 otherwise. This cochain
is in H0(G;F): for every edge e not in C, (δy)e = 0 because y is constant across
that edge, and for every edge e ∈ C, FvPeyv = 0 because either yv = x ∈ Ke or
yv = 0.
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p1 + p2 p1 + p2

Figure 5.1: Not an approximation to the constant sheaf.

However, this condition is not sufficient. Consider the sheaf in Figure 5.1. For
any cutset of the graph,

⋂
Ke = 0. But dimC1(G;F) = 3 while dimC0(G;F) = 6,

so H0(G;F) must have dimension at least 3, larger than H0(G; R2) ' R2.
Applying Proposition 5.2.1 to the cutset of a graph given by Cv = {e : vP e}

shows that an approximation to the constant sheaf must have H0(G,G \ {v};F) = 0.
Conversely, the condition H0(G, v;F) = 0 is a sufficient condition, as can be
seen from Proposition 5.1.1. The subcomplex Y is the single vertex v. The map
H0(G; V) → H0(v; V) is clearly an isomorphism, and the map av : V → F(v) is
an isomorphism, so a is an approximation on v. Since H0(X, v; V) = 0, the map
H0(X, v; V)→ H0(X, v;F) is an isomorphism if and only if H0(X, v;F) = 0.

Suppose we have two graphs G and H carrying approximations F and G to
the constant sheaf V. These approximations can be glued together to produce an
approximation to the constant sheaf on a graph G+H with vertex set the union of
the vertex sets of G and H. All that is necessary is to add edges between vertices of
G and vertices of H, assigning them subspaces Ke of V so that their intersection is
trivial. Any section of the resulting sheaf must restrict to a section of F on G and a
section of G on H, so it is constant on these two subgraphs; the only way it can fail
to be constant is if it has different values on each subgraph, which is prevented by
the subspace intersection hypothesis.
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5.3 sparsification

Sparsification is a natural operation to apply to graphs and complexes. Since
Spielman and Teng’s work on spectral approximation of graphs [ST11], much of
the focus has been on producing spectrally good sparsifications of graphs.

A sparse approximation G ′ of a given graph G should share properties in
common with its dense relative. One particularly important property is the size
of cuts. We might like, for any set of vertices A, the (weighted) number of edges
between A and its complement to be similar in both G and G ′. Writing this in
terms of the Laplacians of G and G ′ says that we want 〈1A,LG1A〉 ≈ 〈1A,LG ′1A〉.
But why restrict to indicator vectors only? Why not simply require that 〈x,LGx〉 ≈
〈x,LG ′x〉 for all x? This is the notion of spectral approximation, and it is formalized
(sometimes with slight variations) in the following definition:

Definition 5.3.1. Let G be a weighted graph. A graph G ′ with the same vertex set
is an ε-spectral approximation of G if for every x ∈ C0(G; R),

(1− ε)〈x,LGx〉 6 〈x,LG ′x〉 6 (1+ ε)〈x,LGx〉.

This requirement can be more economically described with the standard partial
order on the cone of positive semidefinite matrices. Given two PSD matrices A and
B, we say that A � B if B−A is positive semidefinite. (This order is sometimes
known as the Loewner order on the cone of PSD matrices.) The requirement for G ′

to ε-approximate G is then

(1− ε)LG � LG ′ � (1+ ε)LG.

Spielman and Teng [ST11] first gave an algorithm that produced an ε-approx-
imator of a graph with n vertices with O(ε−2n logc n) edges, which was quickly
improved by Spielman and Srivastava [SS11] to O(ε−2n logn) edges. A later algo-
rithm, developed in collaboration with Batson, yields ε-sparsifiers with O(ε−2n)
edges [BSS12]. A similar notion of spectral approximation for simplicial complexes
was introduced by Osting et al. [OPW19]. Chung and Zhao, and later Kyng et al.,
considered the question of spectral sparsification of graphs where the relevant ma-
trix was a connection Laplacian or a block norm diagonally dominant matrix [CZ12;
Kyn+16]. All of these results may be seen as special cases of the approach taken by
Silva et al., who considered the question of sparsifying arbitrary sums of positive
semidefinite matrices [CSHS16].

This last approach also applies to sparsifying sheaves over cell complexes. Given
a (d+ 1)-dimensional complex X with a sheaf F, we wish to produce a complex X ′

with a small number of (d+ 1)-cells and a sheaf F ′ on X ′ such that (1− ε)(∆d+)F �
(∆d+)F ′ � (1+ ε)(∆d+)F. (We control the spectrum of only the up-Laplacian because
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we are only removing top-dimensional cells, which does not affect ∆d−.) This can
be accomplished in various ways. Perhaps the most straightforward is to apply the
main theorem of Silva et al. [CSHS16]:

Theorem 5.3.1 (Silva et al.). Let A1, . . . ,Am be n×n symmetric positive semidefinite
matrices, with A =

∑
iAi. For any ε ∈ (0, 1) there exists a nonnegative weighting

w ∈ Rm with O(n/ε2) nonzero entries such that

A �
m∑
i=1

wiAi � (1+ ε)A.

To use this for sheaves, we consider the decomposition

(∆d+)F =
∑

dimσ=d+1

δ∗σδσ

These are matrices of dimension n = dimCd(X;F), and we can therefore find a
reweighting that uses only O(n/ε2) of them while ε-approximating (∆d+)F. This
amounts to deleting the (d+ 1)-cells which receive zero weighting, while reweight-
ing the restriction maps incident to the remaining cells by the corresponding entries
of the vector w. Note that for ε < 1 this preserves the kernel of (∆d+)F exactly.

However, this focus on simply sparsifying the complex underlying a sheaf is
insufficiently ambitious. A spectrally good sparsification of a sheaf F on a (d+ 1)-
dimensional complex gives us a d-approximation G of F by simply setting the
stalks over removed (d+ 1)-cells to zero. The condition that Hd(X;G) ' Hd(X;F) is
ensured by the fact that (∆−

F)d = (∆−
G )d and ker(∆+

F)d = ker(∆+
G )d. The full gener-

alization of sparsification to cellular sheaves is not simply finding a sparse complex
on which a good approximation can be constructed, but finding a spectrally good
d-approximation to F with small dimCd+1(X;G).

5.3.1 Sheaf approximation by effective resistance

Simple extensions to the two methods for graph and matrix sum sparsification
suffice to produce sheaf approximations. These extensions amount to making one
additional choice at each step in the sparsification procedure.

We give first an approach based on sheaf effective resistance, following Spielman
and Srivastava. Suppose we wish to compute a d-approximation G of a sheaf F on
a (d+ 1)-dimensional complex X. We will do this by spectrally approximating ∆d+,
as this will determine restriction maps for G between d- and (d+ 1)-cells.
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Consider the matrix Π = δd(∆d+)
†(δd)∗. This is an orthogonal projection matrix

acting on Cd+1(X;F), with image im δd. If S is a block diagonal symmetric positive
semidefinite matrix with

‖ΠSΠ−Π‖2 6 ε, (5.1)

then (δd)∗Sδd−1 ε-approximates ∆d+. This holds because the norm inequality is
equivalent to

|〈Πy, (S− I)Πy〉|
‖y‖2

6 ε

for every y ∈ Cd+1(X;F). Since Π is the projection onto im δd, this implies that for
y ∈ im δd,

|〈y, (S− I)y〉|
‖y‖2

6 ε.

We reparameterize y ∈ im δd by y = δdx for x ⊥ ker δd, so that (dropping the
dimensions for notational concision) we have∣∣〈δx,Sδx〉− 〈x,∆+x〉

∣∣
〈x,∆+x〉

6 ε

for all x ⊥ ker δ. Thus, for instance, 〈δx,Sδx〉 6 (1+ ε)〈x,∆+x〉 for all x, since for
x ∈ ker δ this is an equality.

We will now describe a method of choosing a random matrix S so that the
inequality (5.1) holds in expectation, and hence is satisfied by some realization of
S. This construction relies on a matrix concentration bound as follows:

Theorem 5.3.2 (Rudelson-Vershynin [RV07]). Let y1, . . . ,yq be independent identically
distributed samples from a random distribution such that sup‖yi‖2 6M and ‖EyyT‖ 6
1. Then

E

∥∥∥∥∥ 1q
q∑
i=1

yiy
T
i − EyyT

∥∥∥∥∥
2

6 min

(
CM

√
logq
q

, 1

)

for some C independent of M and q.

We will choose our random variable y so that EyyT = Π, and take sufficiently
many samples so that the norm bound is less than ε. Without loss of generality, we
will assume that for each (d+ 1)-cell σ of X, the coboundary map δ is surjective
onto σ. This ensures that Reff(σ) = δσ(∆

d
+)
†
Fδσ∗ is nonsingular.
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The variable yi will correspond to a randomly chosen (d + 1)-cell σi, with
probability proportional to trReff(σ). Since Reff(σ) is the diagonal (σ,σ) block of
Π,
∑
σ trReff(σ) = trΠ = dim im δ = codim ker δ. Therefore, the probability of

choosing σ is pσ =
trReff(σ)
dim imδ .

Once we have chosen the cell σ, we choose a random vector xσ ∈ F(σ) so that
Exσx

T
σ = idF(σ) and xTσReff(σ)xσ = trReff(σ). In particular, letting viσ be the unit

eigenvectors of Reff(σ), with eigenvalues λi we let xσ =
√

tr Reff(σ)
λi

viσ. Then

ExxT =
∑
i

λi
trReff(σ)

trReff(σ)

λi
viv

T
i = idF(σ)

and

xTi Reff(σ)xi =
trReff(σ)

λi
vTi Reff(σ)vi =

trReff(σ)

λi
λi = trReff(σ).

After choosing σ and xσ, we let y = 1√
pσ
Πxσ.

We now need to check that EyyT = Π, and bound ‖y‖2. We have

EyyT =
∑
σ

pσ
1

pσ
EΠxσx

T
σΠ =

∑
σ

Π idF(σ)Π = Π.

Since y = 1√
pσ
Πxσ for some σ, we can bound ‖y‖ by bounding

∥∥∥∥ 1
√
pσ
Πxσ

∥∥∥∥2 = 1

pσ
xTσΠxσ =

1

pσ
xTσReff(σ)xσ =

dim im δ

trReff(σ)
trReff(σ) = dim im δ.

Thus ‖y‖ 6
√

dim(im δ). Let B = dim(im δ)). We then have

E‖
q∑
i=1

yiy
T
i −Π‖2 6 C

√
B

√
logq
q

.

Note that the matrix S is equal to
∑
i
1
pσi
xiσi(x

i
σi
)T , which implies an approximation

morphism aσ : F(σ)→ G(σ) given by the projection onto the vectors 1√
pσ
xiσ for the

various realizations of xσ used in the construction.
What remains is to choose q, which controls the total dimension of Cd+1(X;G).

We want the bound to be at most ε, so we need

q

logq
>
C2B

ε2
.
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Choosing q =
tC2B log(B)

ε2
gives us

q

logq
=

tC2B logB

ε2 log
(
2C2B logB

ε2

) .

If B is sufficiently large that

(B)t >
C2B logB

ε2
,

then we have

t logB > log
(
C2B logB

ε2

)
tC2B logB

ε2
>
C2B

ε2
log
(
C2B logB

ε2

)
tC2B logB

ε2 log
(
2C2B logB

ε2

) > C2B
ε2

.

This discussion has closely followed the original proof of the spectral sparsifi-
cation algorithm by Spielman and Srivastava [SS11]. The eigendecomposition of
Reff(σ) can be seen as giving a ranking of subspaces of F(σ) by their importance to
the spectrum of (∆d+)F.

In summary, we have shown

Theorem 5.3.3. Let F be a sheaf on a (d + 1)-dimensional cell complex X. For any
ε ∈ (0, 1) There exists a d-approximation G to F such that (1− ε)(∆d+)F � (∆d+)G �
(1+ ε)(∆d+)F and dimCd+1(X;G) = O(dim(im δdF) log(dim(im δdF))ε

−2).

Note that dim(im δd) 6 dimCd(X;F), so the dimension of Cd+1(X;F ′) is in fact
bounded in terms of the dimension of Cd.

One could get an asymptotically similar bound by simply choosing beforehand
a decomposition of each matrix δ∗σδσ into a sum of rank-1 matrices and applying
the O(n logn/ε2) approximation algorithm of Silva et al. [CSHS16] This proof
illustrates the preferability of choosing a particular rank-1 decomposition of these
matrices, namely that given by the eigenvectors of the effective resistance matrix
for each (d+ 1)-cell.

There is a natural randomized algorithm to produce such an approximation. It
requires computation of Π, or at least the effective resistances Reff(σ) for all (d+ 1)-
cells σ. Naively, this takes O((dimCd(X;F))3) time, by finding the pseudoinverse
of (∆d+)F. However, the special structure of the up-Laplacian may allow for quicker
computations, or at least approximations, of the effective resistances. Once the
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effective resistances are known, the algorithm takes O(q) steps which involve
sampling vectors of size O(D).

5.3.2 Linear-sized approximations

We can also produce sheaf approximations by generalizing the approach used
in [BSS12; CSHS16] to produce linear-sized graph or matrix sum sparsifiers. The
algorithms to produce these are not randomized, but are still nondeterministic. The
main approach is to iteratively select matrices to add to the sum while maintaining
careful bounds on how well the partial sum approximates the desired matrix.

We will begin by converting the problem into that of approximating a sum of
positive semidefinite matrices. We want to find a sheaf G with small dimCd+1(X;G)
such that (∆d+)G is a good spectral approximation of (∆d+)F. Write

(∆d+)F =
∑

dimσ=d+1

(δdF)
∗
σ(δ

d
F)σ =

∑
dimσ=d+1

∆σF

and

(∆d+)G =
∑

dimσ=d+1

(δdG)
∗
σ(δ

d
G)σ =

∑
dimσ=d+1

∆σG.

We want to be able to write (δdG)σ = aσ(δ
d
F)σ for some collection of maps aσ

defining an approximation a : F → G. It is possible to do this if ker∆σG ⊇ ker∆σF
for all σ.

Lemma 5.3.1. Let ker∆σG ⊇ ker∆σF for all σ. Then
∑
σ∆

σ
G is the degree-d up-Laplacian

of a sheaf G carrying a morphism a : F → G.

Proof. Let G(σ) = F(σ) for all σ of dimension at most d, and let aσ = id for
these cells. Take an orthogonal basis of eigenvectors of ∆σG which contains a
basis for ker∆σF. There exists a matrix Aσ so that for every v,w in this basis,
we have 〈(δdF)σv,Aσ(δdF)σw〉 = 〈v,∆σGw〉, ensuring that (δdF)

∗
σAσ(δ

d
F)σ = ∆σG. Aσ

is constructed by noting that for eigenvectors v ⊥ ker∆σF, (δdF)σv form a basis
for im(δdF)σ, so an operator on this space is determined by the inner products
above. Taking a rank-revealing decomposition Aσ = a∗σaσ gives us stalks G(σ) for
(d+ 1)-cells σ, as well as the desired approximation maps aσ : F(σ)→ G(σ).

Once we have the maps aσ, the restriction maps GτPσ are readily constructed
by requiring these stalkwise maps to form a sheaf morphism. These restriction
maps determine a functor G : X → Hilb by a quick diagram chase given the
commutativity of a with the restriction maps.
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Thus, we will be able to compute spectrally good d-approximations to F if the
following holds:

Theorem 5.3.4. Let {Ai} be a collection of positive semidefinite D×D matrices. For any
ε ∈ (0, 1) there exists a collection of positive semidefinite matrices {Bi} with kerBi ⊇
kerAi and

∑
i rank(Bi) = O(D/ε2) such that

(1− ε)
∑
i

Ai �
∑
i

Bi � (1+ ε)
∑
i

Ai.

We will prove this theorem by an extension of de Carli Silva et al.’s proof of
Theorem 5.3.1, which is itself an extension of Batson, Spielman, and Srivastava’s
proof of the existence of linear-sized graph sparsifiers.

We first reduce to the case where
∑
iAi = I, which is clearly possible by

restricting to ker(
∑
iAi)

⊥ and multiplying by (
∑
iAi)

−1/2 on either side. This
allows us to deduce the Loewner order inequality by controlling the largest and
smallest eigenvalues of

∑
i Bi. The proof proceeds by iteratively selecting rank-1

matrices Ck, with kerCk ⊇ kerAik for some ik, to add to a running sum, with
bounds on the upper and lower eigenvalues of the sum carefully maintained.
These bounds are ensured by a pair of “barrier functions” whose values control
the change in eigenvalues as we add a new matrix Ck. It will then be possible to
show that after we add O(D/ε2) such matrices, the approximation bound will be
satisfied.

For u > λmax(A), Φu(A) = tr(uI − A)−1 is finite. As u approaches λmax(A),
Φu(A) goes to infinity. Similarly, for ` < λmin(A), Φ` = tr(A − `I)−1 is finite,
and goes to infinity as ` approaches λmin(A). The goal is to increment u and `
appropriately as we add new terms to our matrix A, so that the eigenvalues of A
never pass below ` or above u, and after a predetermined number of steps A will
be close to the identity.

Our goal at each step is then to choose a matrix C so that λmax(A + C) and
Φu+δu(A + C) are controlled, and similarly for λmin(A + C) and Φ`+δ`(A + C).
Conditions for this to be possible are given by a pair of lemmas proved by Batson,
Spielman, and Srivastava [BSS12] and generalized by de Carli Silva et al. [CSHS16].
We will let Au = (uI−A)−1 and A` = (A− `I)−1.

Lemma 5.3.2 (Lemmas 4.1 and 4.2, [CSHS16]). Let A be a symmetric matrix, and
C symmetric positive semidefinite and nonzero; let `,u ∈ R, and δ`, δU > 0. If ` <
λmin(A) 6 λmax(A) < u and

〈(Au+δu)2,X〉
Φu(A) −Φu+δu(A)

+ 〈Au+δu ,X〉 6 1

α
6

〈A2`+δ` ,X〉
Φ`+δ`(A) −Φ`(A)

− 〈A`+δ` ,X〉, (5.2)



5.3 sparsification 76

then `+ δ` < λmin(A+ αX) 6 λmax(A+ αX) < u+ δu, Φu+δu(A+ αX) 6 Φu(A),
and Φ`+δ`(A+αX) 6 Φ`(A).

If A is our running sum, we need to choose the matrix X from the set of
admissible matrices: those that have kernel containing kerAi for some Ai. The goal
is to choose appropriate values of δ`, δu, and bounds on Φu and Φ` so that it is
always possible to do this.

The necessary result is this:

Lemma 5.3.3 (Lemma 4.3, [CSHS16]). Suppose ` < λmin(A) 6 λmax(A) < u,Φu(A) 6
εU, and Φ`(A) 6 εL. If

0 6
1

δu
+ εU 6

1

δ`
− εL,

then there exists some j and α such that (5.2) is satisfied.

The proof proceeds by showing that there exists some α such that the inequality
holds in expectation for Ai chosen uniformly at random, which implies that it
holds for some Ai.

We know, therefore, that at each step k in constructing A, there exists some Aik
such that we can add αAik to the sum and preserve the necessary bounds. But
we can go further: once we know Aik , we can choose a random vector c such that
E[cc∗] = αAik and c ⊥ kerAik . Then by linearity, the inequality (5.2) holds in
expectation for the matrix cc∗, and hence there exists some particular realization
ck such that it holds. We then use Ck = α ′ckc

∗
k as the next term in the sum, for an

appropriate α ′.
What remains is to choose the parameters appropriately. Given our approxima-

tion level ε, we let

δL = 1, εL =
ε

2
, `0 = −

D

εL
, δU =

2+ ε

2− ε
, εU =

ε

2δU
, u0 =

D

εU
,

again as previously derived. After T = 4D
ε2

steps, we have λmax(A) 6 u0 + TδU =(
2D
ε + 4D

ε2

)
2+ε
2−ε and λmin(A) > `0 + TδL = −2Dε + 4D

ε2
. Thus

λmax(A)

λmin(A)
6
u0 + TδU
`0 + TδL

=
1+ 2

ε

−1+ 2
ε

2+ ε

2− ε
=

(
2+ ε

2− ε

)2
6
1+ ε

1− ε
.

This ensures that

(1− ε)I � 1− ε

λmin(A)
A � (1+ ε)I,
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which is our desired bound. Further, A is the sum of T rank-one matrices Ck, and
hence when we collate these matrices together into Bi =

∑
k:ik=i

Ck,
∑
i rank(Bi) 6

T = 4D
ε2

. We in fact have a concrete bound, not just an asymptotic one.
Ascending from these details back to the question of sheaf approximation, we

have shown (with assistance from Batson et al. and de Carli Silva et al.):

Theorem 5.3.5. Let F be a sheaf on a (d+ 1)-dimensional cell complex X. For any ε ∈
(0, 1), there exists a d-approximation G of F with (1−ε)(∆d+)F � (∆d+)G � (1+ε)(∆d+)F
and dimCd+1(X;G) = 4dim(Cd(X;F))/ε2.

Neither this algorithm nor the effective resistance-based algorithm is able to give
any guarantees about the dimension of a particular stalk in the approximating sheaf.
If a particular (d+ 1)-cell has relatively large effective resistance, it may be chosen
sufficiently often that its stalk dimension is entirely preserved. Indeed, it is not in
general possible to produce a d-approximation to a sheaf with a uniform reduction
in stalk dimensions. Consider, for instance, the constant sheaf Rn on a graph with
two densely connected subgraphs joined by a single edge e. Any approximation F

must have F(e) = Rn by Proposition 5.2.1. Determining conditions under which it
is possible to uniformly reduce stalk dimensions in an approximation will require
a more subtle analysis.
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E X PA N S I O N

6.1 expander graphs

In graphs, “expansion” refers to certain qualitative measures of connectedness.
These properties were initially defined combinatorially, but turn out to have useful
and interesting spectral analogues. Intuitively, a graph is well connected if it is hard
to disconnect: removing a few edges or vertices should leave us with a connected
graph. This gives the combinatorial notion of vertex or edge connectivity of a
graph—one less than the minimal number of vertex or edge deletions necessary
to disconnect the graph. Expansion is a somewhat subtler concept, depending not
only on the amount of work necessary to disconnect the graph, but also on the size
of the resulting components.

Definition 6.1.1. Let G be a graph. The edge expansion constant of G is

h(G) = min
A⊆V(G)

|∂A|

min(|A| , |V(G) \A|)
.

The vertex expansion constant of G is

hv(G) = min
A⊆V(G)

|N(A)|− |A|

min(|A| , |V(G) \A|)
.

The term “expansion” comes from thinking of the ratio of the size of the vertex
set A to the size of its neighborhood. If the vertex expansion constant of G is large,
every sufficiently small set of vertices has a neighborhood that expands its size
significantly. To disconnect a set A of size less than half the number of vertices
of the graph, one must sever at least h(G) |A| edges, or delete at least hv(G) |A|
vertices.

Another common measure of connectivity of a graph is the algebraic connectivity,
the second smallest eigenvalue of the graph Laplacian. By the Courant-Fischer-Weyl
theorem, this is

λ2 = min
x⊥1

〈x,Lx〉
〈x, x〉

.

78
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There are various results relating the algebraic connectivity of a graph with its
vertex and edge expansion. Perhaps the most famous is the Cheeger inequality,
so called by analogy with Cheeger’s isoperimetric inequality for Riemannian
manifolds.

Theorem 6.1.1 (Cheeger inequality, [Dod84]). LetG be a d-regular graph, with algebraic
connectivity λ2. Then

λ2
2
6 h(G) 6

√
2dλ2.

The left-hand side of this inequality is straightforward to prove, since the mini-
max characterization of λ2 can be seen as a relaxation of the optimization problem
defining h(G). The right-hand side is more involved, but gives a construction
of a set of vertices with edge expansion at most

√
2dλ2 from the corresponding

eigenvector of L. Stronger versions of this inequality are in fact true, but this version
suffices to show an equivalence between combinatorial and spectral measures of
expansion.

For regular graphs, the spectra of the adjacency matrix and the Laplacian deter-
mine each other—an eigenvalue λ of L gives an eigenvalue µ = d− λ of A. Thus
we can cast spectral expansion in terms of eigenvalues of the adjacency matrix,
which introduces a new spectral property of interest. The algebraic connectivity
λ2 becomes an eigenvalue µ2 = d− λ2, while the eigenvalue λ1 = 0 becomes the
eigenvalue µ1 = d. It is straightforward to see (for instance, by applying Propo-
sition 4.1.3) that the maximum eigenvalue of L is at most 2d, so the minimum
eigenvalue of A is at least −d. We can thus either put a symmetric bound on the
nontrivial eigenvalues of A, requiring them to lie close to zero, or only put an
upper bound, requiring them to stay away from d.

Definition 6.1.2. A d-regular graph G has two-sided spectral expansion constant
η if all its nontrivial adjacency eigenvalues (all but the eigenvalue d) lie in the
interval [−d+η,d−η]. G has one-sided spectral expansion constant η if all nontrivial
adjacency eigenvalues lie in [−d,d− η].

A graph with an expansion constant bounded by η (either above or below,
as appropriate for combinatorial or spectral expansion constants) is called an
η-expander. One way to interpret the Cheeger inequality is that being an edge
expander and being a one-sided spectral expander are equivalent up to a factor of
a square root.

A surprising result due to Pinsker1 [Pin73] (to whom we also owe the term
“expander”) is

1 It appears a similar result was generated by Kolmogorov and Barzdin several years earlier in a
different context [KB67].



6.1 expander graphs 80

Theorem 6.1.2 (Pinsker). Let Gn,d be a uniform random d-regular graph on n vertices,
for d > 3. There exists some ε > 0 such that P(h(Gn,d) > ε)→ 1 as n→∞. Therefore,
there is an infinite family of d-regular ε-edge expander graphs.

This result is somewhat surprising. In essence, it is possible to maintain a uniform
level of connectivity in a family of graphs, even as the number of edges grows only
linearly with the number of vertices.

Applying the Cheeger inequality shows that there also exists an infinite family
of d-regular one-sided spectral expanders for some nontrivial spectral expansion
constant.

Once the existence of infinite expander families has been established, a natural
question is then how good can expanders be? This is hard to answer for combinato-
rial expansion constants, but for spectral expansion a bound on η was established
by Alon and Boppana2:

Theorem 6.1.3 (Alon-Boppana). The largest nontrivial adjacency eigenvalue of a d-
regular graph is asymptotically at least 2

√
d− 1− o(1) as the number of vertices goes to

infinity.

This puts a limit on precisely how good a spectral expander can be. There
can be no infinite family of d-regular expanders with expansion constant better
than η = d− 2

√
d− 1. We then have the question of whether this bound can be

achieved. A d-regular graph satisfying the eigenvalue bound µ2 6 2
√
d− 1 is

called a Ramanujan graph. The first constructions of infinite families of Ramanujan
graphs are due to, independently, Margulis and Lubotzky-Phillips-Sarnak [Mar88;
LPS88].

Theorem 6.1.4 (Margulis, Lubotzky-Phillips-Sarnak). For any prime p, there exists
an infinite family of (pk + 1)-regular Ramanujan graphs, realized as Cayley graphs of
PSL(2, Fq) for an appropriately chosen q.

This was recently strengthened by Marcus, Spielman, and Srivastava [MSS15;
MSS18] to

Theorem 6.1.5 (Marcus-Spielman-Srivastava). For every d > 3, there exist d-regular
(bipartite) Ramanujan graphs with every number of vertices.

Note that bipartiteness implies that these graphs have −d as an adjacency
eigenvalue and hence are not technically double-sided spectral expanders.

2 This theorem is credited to Alon and Boppana, but it seems that they never published a proof. A
well known proof was published by Nilli in [Nil91].
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6.2 expander sheaves

Our goal in this section is to develop an analogue of expander graphs in the
context of cellular sheaves. Although some study has been made of the concept of
expansion in higher-dimensional simplicial complexes [Gro09; Gro10; Par13; Ste13],
we will limit our focus to sheaf-theoretic analogues of expander graphs, as this is a
sufficiently difficult problem.

Combinatorial definitions are hard to generalize to algebraic structures like
sheaves, so we will begin from the spectral perspective. An initial approach might
be to simply let an expander sheaf be a “regular” sheaf on a graph with eigenvalues
concentrated in some small set. However, this definition is not very interesting: there
exist cellular sheaves whose Laplacian is the identity matrix, giving them a perfect
“expansion constant.” Another difficulty is that expander graphs are unweighted,
while the restriction maps of a sheaf are inherently weighted. This, combined with
a desire to maintain an analogy with the properties of expander graphs, motivates a
decision to restrict to matrix-weighted graphs with very particular sorts of weights.

Definition 6.2.1. A 0-approximation F to Rn over a graph G is an η-expander sheaf
if all of the following hold:

1. F is dI-regular

2. Every restriction map is a partial isometry

3. All its nontrivial adjacency eigenvalues (i. e.those apart from the eigenvalue
d with multiplicity n) lie in [−d+ η,d− η].

Constant sheaves over a d-regular expander graph clearly qualify as expander
sheaves. Note that if G is an `-regular graph and all restriction maps of an expander
sheaf F are rank k, with vertex stalks of dimension n, then d = ` kn . However, it is
not immediately obvious that it is possible to nontrivially satisfy these conditions,
let alone with well-controlled values of η.

Theorem 6.2.1. There exist nontrivial examples of expander sheaves.

To show this, we will first need a couple of definitions from finite-dimensional
frame theory.

Definition 6.2.2. Let H be a Hilbert space. A frame in H is a collection of vectors F
in H such that there exist positive A,B such that for every x ∈ H, we have

A‖x‖2 6
∑
e∈F

|〈e, x〉|2 6 B‖x‖2.

If we may take A = B, F is called a tight frame.
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A frame is a sort of “linearly dependent basis” for H. Frame theory arose in
the study of nonunique signal decompositions such as wavelets. However, if H is
finite-dimensional, frames (at least those with finitely many vectors) are equivalent
to matrices of full rank.

For a frame F, we have the synthesis operator SF : RF → H given by SF(y) =∑
e∈F yee, and the analysis operator AF : H → RF given by AF(x) = (〈e, x〉)e∈F.

When we assign RF its natural Hilbert space structure, these maps are adjoints;
when F is a finite set, the matrix representing SF has columns equal to the
frame elements, and AF has rows equal to the frame elements. We further have∑
e∈F |〈e, x〉|

2 = ‖AF(x)‖2 = 〈AF(x),AF(x)〉. Thus, a frame is tight if and only if
A∗FAF = SFAF is a scalar multiple of the identity.

A frame all of whose elements have norm 1 is a unit norm frame. We will use a
generalization of unit norm frames to construct nontrivial expander sheaves.

Definition 6.2.3. Let H be a Hilbert space. A fusion frame in H is a collection F of
subspaces V 6 H such that if PV is the orthogonal projection onto V , we have

A‖x‖2 6
∑
V∈F
‖PVx‖2 6 B‖x‖2

for every x ∈ H.

A fusion frame whose subspaces all have dimension 1 is the same as a unit norm
frame. Again, a fusion frame is tight if we may take A = B in the above inequality.
Therefore, a tight fusion frame is one for which the projection matrices PV sum to
a scalar multiple of the identity.

Nontrivial tight fusion frames exist. Specifically, Casazza et al. showed that
for d > dn` e+ 2, there exists a fusion frame in Rn consisting of d subspaces of
dimension ` [Cas+11]. Further, no such fusion frames exist for d 6 dn` e.

We can use fusion frames to construct regular approximations to the constant
sheaf on a regular graph. Specifically, let G be a d-regular graph with a d-edge
coloring, and suppose we wish to approximate the constant sheaf Rn on G. We
choose a tight fusion frame F for Rn with d elements. In particular, then, we have∑
V∈F PV = d

nI. We use the projections PV as the weights of a matrix-weighted
graph. Since there are d projections for the fusion frame and d edge colors, we
match each edge color to a projection and assign these projections as weights to the
corresponding edges. Since each vertex is incident to precisely one edge of each
color, the matrix-weighted degree for each vertex is equal to d

nI.
While this construction will produce a d

nI-regular matrix-weighted graph with
orthogonal projections as weights, there is no guarantee that this will be an ap-
proximation to the constant sheaf. The resulting sheaf may have additional global
sections, and hence have nontrivial adjacency eigenvalues equal to d

n . However, we
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can construct individual instances where this is not the case; for instance, the sheaf
described in Figure 3.1 is one such sheaf on the 3-regular graph K4; the frame used
is the Mercedes-Benz frame, the simplest nontrivial frame in R2.

The constructions of tight fusion frames by Casazza et al. are reassuring in that
they imply that it is possible to construct expander-like sheaves. However, their
particular constructions are suboptimal for this purpose, because many of the
subspaces turn out to be spanned by standard basis vectors of Rn. Intuitively, it
seems that a fusion frame analogue of equiangular frames would be more desirable,
since these would preserve information more equitably across the edges incident
to a vertex.

6.2.1 Bounds for expander sheaves

The Alon-Boppana bound tells us how good a spectral expansion constant we can
hope for in an infinite family of expanders. Here we search for its analogue for
an expander sheaf. If we try to generalize its proof to matrix-weighted graphs,
we do not obtain the same bound, but rather a scaled version. This is a general
phenomenon when comparing the spectrum of a matrix-weighted graph with that
of its underlying graph.

Theorem 6.2.2. Let F be a matrix-weighted graph with underlying graph G and vertex
stalks Rn. Consider the weighted graph tr(F) with edge weights wuv = − tr(LF[u, v]);
denote its Laplacian matrix L, its algebraic connectivity λ2, and its largest Laplacian
eigenvalue λmax . Let λ2(F) be the (n+ 1)st smallest eigenvalue of LF and λmax (F) the
largest eigenvalue of LF. Then λ2(F) 6 1

nλ2 and λmax(F) > 1
nλmax.

Proof. Let y be a unit eigenvector of L corresponding to λ2, and let x be a uniform
random variable on the unit sphere in Rn. Note that y ⊗ x may be seen as a
0-cochain of F; further, ‖y⊗ x‖ = 1 and y⊗ x is orthogonal to the space of constant
0-cochains of F. We now compute

E[〈y⊗ x,LF(y⊗ x)〉] = E

 ∑
u,vPe

〈yvx− yux,We(yvx− yux)〉


=
∑
u,vPe

(yv − yu)
2E [〈x,Wex〉]

=
∑
u,vPe

tr(We)
n

(yv − yu)
2

=
1

n
〈y,Ly〉 = 1

n
λ2.
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Since this is an expectation, there must exist some unit norm x such that 〈y⊗
x,LF(y ⊗ x)〉 6 1

nλ2, and hence λ2(F) 6 1
nλ2. Applying essentially the same

argument with y an eigenvector of L corresponding to λmax, we get the bound
λmax(F) > 1

nλmax.

We apply this result to an expander sheaf F on a d-regular graph where all
edge weights are rank k projections. Then the edge weights of tr(F) are all k,
so if we take the underlying unweighted graph, we have λ2(tr(F)) = kλ2(G),
and hence λ2(F) 6 k

nλ2(G). Similarly, λmax(F) > k
nλmax(G). The degree of F

is k
ndI, so the nontrivial adjacency eigenvalues are at least as far from zero as

k
n(d− λ2(G)) =

k
nµ2(G) and k

n(d− λmax(G)) =
k
nµN(G).

Now applying the Alon-Boppana bound to G, we have |µ(F)| > k
n
|µ(G)| >

2 kn
√
d− 1− o(1). Rewriting this bound in terms of the sheaf degree ` = k

nd, this
is equal to 2 `d

√
d− 1− o(1). In general, this weaker than the naive translation of

the Alon-Boppana bound, replacing the graph degree with the sheaf degree, since
`
d

√
d− 1 6

√
d− 1 in general.

This suggests the exciting possibility that we may be able to construct better-than-
Ramanujan expander sheaves. However, our best known techniques for constructing
Ramanujan graphs do not immediately extend to sheaves, and even constructing
an infinite family of nontrivial expander sheaves is difficult. On the other hand, if
the direct translation of the Alon-Boppana bound does in fact hold for expander
sheaves, we have a different interesting result: Ramanujan graphs are optimal
solutions to the relaxed problem of finding families of sheaves with good expansion
constants.

6.3 the expander mixing lemma

The expander mixing lemma for graphs, first proved by Alon and Chung [AC88],
quantifies the intuitive statement that graphs with good spectral expansion are
“nearly random.” In a random d-regular graph, the expected number of edges
between two sets S and T of vertices is

E[E(S, T)] =
d |S| |T |

|G|
,

since each vertex in S has d neighbors, and on average a fraction of |T | / |G| of
these neighbors will be in T . The expander mixing lemma gives a bound for how
far E(S, T) can be from its expectation in terms of the sizes of S and T , and the
spectrum of the adjacency matrix.
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Lemma 6.3.1 (Expander Mixing Lemma). Suppose G is a connected k-regular graph
whose nontrivial adjacency eigenvalues are bounded in modulus by λ. If S and T are subsets
of the vertex set of G, then∣∣∣∣E(S, T) −

d |S| |T |

|G|

∣∣∣∣ 6 λ
√

|S| |T |

(
1−

|S|

|G|

)(
1−

|T |

|G|

)
.

Proof. Let 1S and 1T be the indicator vectors for S and T . Note that E(S, T) =

1TSA1T . The constant vector 1 is an eigenvector of A with eigenvalue k, and we
expand the indicator vectors in terms of this eigenspace and its complement.

1S =
|S|

n
1 + 1⊥S ; 1T =

|T |

n
1 + 1⊥T .

We then have

E(S, T) = 1TSA1T =

(
|S|

n
1 + 1⊥S

)T
A

(
|T |

n
1 + 1⊥T

)
=

|S| |T |

n2
1TA1 +

|T |

n
(1⊥S )

TA1 +
|S|

n
1A1⊥T + (1⊥S )

TA1⊥T .

Since 1 is an eigenvector of A and 1 ⊥ 1⊥• , the middle two terms vanish. Further,
1TA1 = kn, so we have E(S, T) = k|S||T |

n + (1⊥S )
T
A1⊥T . Taking absolute values, we

have ∣∣∣∣E(S, T) −
k |S| |T |

n

∣∣∣∣ = ∣∣∣(1⊥S )TA1⊥T ∣∣∣ 6 ‖A1⊥T ‖‖1⊥S ‖ 6 λ‖1⊥T ‖‖1⊥S ‖.
It only remains to compute the norms of the complement vectors. We have ‖1⊥S ‖2+
|S|2

n2
‖1‖2 = ‖1S‖2, giving ‖1⊥S ‖ =

√
|S|−

|S|2

n =

√
|S|
(
1−

|S|
n

)
. Applying the same

treatment to 1⊥T gives us our final bound.

Note that there is no requirement that the graph be unweighted—regularity
is all that is needed. In this case, the edges between S and T are counted in a
weighted fashion. This suggests that it should be possible to generalize to matrix-
valued weights as well. To do this, we need a matrix-valued analogue for E(S, T).
A reasonable choice is E(S, T) =

∑
u∈S,v∈T Auv, where A is the block adjacency

matrix of a matrix-weighted graph on n vertices with d-dimensional stalks. We
can extract this information from the adjacency matrix in the same way as with
the adjacency matrix of a standard graph. Let IS be the nd× d matrix with a copy
of the identity in each block corresponding to a vertex in S and zeros everywhere
else, and similarly for IT . Then E(S, T) = ITSAIT , and we can use the same tricks
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as for the standard expander mixing lemma. We decompose IS =
|S|
n IG + I⊥S and

IT =
|T |
n IG + I⊥T , where IG is the nd× d matrix with a copy of the identity in every

d× d block. Note that this is an orthogonal decomposition: every column of IG
is perpendicular to every column of I⊥S . Further, the columns of IG and I⊥S are
mutually orthogonal, as can be seen by considering their supports. This allows us
to perform the following decomposition:

E(S, T) = ITSAIT =

(
|S|

n
IG + I⊥S

)T
A

(
|T |

n
IG + I⊥T

)
=

|S| |T |

n2
ITGAIG +

|S|

n
IGAI

⊥
T + (I⊥S )

TA
|T |

n
IG + (I⊥S )

TAI⊥T .

Note now that every column of IG is an eigenvector of A with eigenvalue k;
since these are orthogonal to every column of I⊥S and I⊥T , the two middle terms
vanish. This fact also allows us to simplify the first term, giving

E(S, T) −
k |S| |T |

n
I = (I⊥S )

TAI⊥T .

At this point we can extract two bounds. One comes from taking the trace of this
equation and taking absolute values:∣∣∣∣tr(E(S, T)) −

dk |S| |T |

n

∣∣∣∣ = ∣∣∣tr((I⊥S )TAI⊥T )∣∣∣ 6 d∑
i=1

|λd+i| ‖(I⊥S )i‖‖(I⊥T )i‖,

where, e. g., (I⊥S )i is the ith column of I⊥S . These norms are straightforward to
compute. For instance, ‖(I⊥S )i‖2 + ‖

|S|
n (IG)i‖2 = ‖(IS)i‖2, so

‖(I⊥S )i‖ =

√
|S|−

|S|2

n2
n =

√
|S| (1−

|S|

n
).

Putting this all together, we have∣∣∣∣tr(E(S, T)) −
dk |S| |T |

n

∣∣∣∣ 6 d∑
i=1

|λd+i|

√
|S| |T |

(
1−

|S|

n

)(
1−

|T |

n

)
.

Alternately, instead of bounding the trace, we can produce a bound in the
semidefinite order. Let

∣∣(I⊥S )TAI⊥T ∣∣ be the positive semidefinite matrix obtained
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by replacing all eigenvalues of (I⊥S )
TAI⊥T with their absolute values. In particular,

then, we have

−
∣∣∣(I⊥S )TAI⊥T ∣∣∣ � E(S, T) −

k |S| |T |

n
I �

∣∣∣(I⊥S )TAI⊥T ∣∣∣ .
Meanwhile,

∣∣(I⊥S )TAI⊥T ∣∣ � ‖(I⊥S )TA|V⊥1 I⊥T ‖I, where A|V⊥1 is the adjacency operator
restricted to the orthogonal complement of the eigenspace of constant cochains,
and

‖(I⊥S )TA|V⊥1 I
⊥
T ‖ 6 ‖I⊥S ‖‖A|V⊥1 ‖‖I

⊥
T ‖ = |λd+1|

√
|S| |T |

(
1−

|S|

n

)(
1−

|T |

n

)
.

In summary, we have

Lemma 6.3.2 (Expander mixing lemma for regular matrix-weighted graphs). Let F
be a kI-regular matrix-weighted graph on an n-vertex graph G, whose vertex stalks are
dimension d. If S and T are subsets of the vertices of G, then the following hold:∣∣∣∣tr(E(S, T)) −

dk |S| |T |

n

∣∣∣∣ 6 d∑
i=1

|λd+i|

√
|S| |T |

(
1−

|S|

n

)(
1−

|T |

n

)
(6.1)

E(S, T) −
k |S| |T |

n
I � |λd+1|

√
|S| |T |

(
1−

|S|

n

)(
1−

|T |

n

)
I, (6.2)

E(S, T) −
k |S| |T |

n
I � − |λd+1|

√
|S| |T |

(
1−

|S|

n

)(
1−

|T |

n

)
I (6.3)

where k = λ1 = · · · = λd > |λd+1| > · · · are the eigenvalues of the adjacency matrix of F
ordered by decreasing absolute value.

We can interpret this as saying that for a kI-regular matrix-weighted graph with
good expansion constant, E(S, T) is close to what its expectation would be for the
constant sheaf Rd on a random k-regular graph.

6.3.1 Irregular graphs

A similar result holds for irregular matrix-weighted graphs. For this we use the
normalized adjacency matrix, which is given by the off-diagonal blocks of the
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normalized Laplacian matrix of the sheaf. Equivalently, this is the matrix Ã =

D−1/2AD−1/2. Define the nd× d matrix ψ whose blocks consist of the diagonal
blocks of D1/2. The columns of ψ are all eigenvectors of Ã with eigenvalue 1, and

E(S, T) = ITSAIT = ψTSD
−1/2AD−1/2ψT = ψTSÃψT ,

where ψS is the matrix equal to ψ in blocks corresponding to vertices in S and zero
otherwise.

In irregular graphs, it is more convenient to measure the size of a set of vertices
by its volume: the sum of the degrees of the vertices in the set. Similarly, for
irregular matrix-weighted graphs sheaves, we define vol(S) to be the sum of the
degree matrices of the vertices in S. Then vol(S) = ITSDIS = ψTSψS = ψTSψ. We now
decompose ψS = ψvol(G)−1 vol(S) +ψ⊥S . The two terms in this decomposition are
orthogonal in the sense that

(ψ⊥S )
Tψvol(G)−1 vol(S) = (ψS −ψvol(G)−1 vol(S))Tψvol(G)−1 vol(S)

= vol(S)vol(G)−1 vol(S) − vol(S)vol(G)−1 vol(G)vol(G)−1 vol(S) = 0.

However, the individual columns of the two matrices are not orthogonal. This
means we will not get quite as tight a bound as in the regular case. However, we
do have

E(S, T) = (ψS)
T ÃψT

= (ψvol(G)−1 vol(S) +ψ⊥S )
T Ã(ψvol(G)−1 vol(T) +ψ⊥T )

= vol(S)vol(G)−1ψÃψvol(G)−1 vol(T) + (ψ⊥S )
T Ãψ⊥T

= vol(S)vol(G)−1 vol(T) + (ψ⊥S )
T Ãψ⊥T .

Therefore, we have

E(S, T) − vol(S)vol(G)−1 vol(T) = (ψ⊥S )
T Ãψ⊥T .

Taking the trace gives

∣∣tr(E(S, T) − vol(S)vol(G)−1 vol(T)
∣∣ 6 ∣∣∣tr((ψ⊥S )T Ãψ⊥T )∣∣∣
6 ‖ψ⊥S ‖F‖Ãψ⊥T ‖F 6 |λd+1| ‖ψ⊥S ‖F‖ψ⊥T ‖F.
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The norms in this formula are, e. g.,

‖ψ⊥S ‖F = tr
[
(ψS −ψvol(G)−1 vol(S))T (ψS −ψvol(G)−1 vol(S))

]
= tr[vol(S) + vol(S)vol(G)−1 vol(S)

− vol(S)vol(G)−1 vol(S) − vol(S)vol(G)−1 vol(S)]

= tr
[
vol(S) − vol(S)vol(G)−1 vol(S)

]
Combining this all gives

Lemma 6.3.3 (Expander Mixing Lemma for irregular matrix-weighted graphs). Let
F be a matrix-weighted graph with underlying unweighted graph G, with vertex stalks
dimension d. If S and T are subsets of the vertices of G, then

|tr [E(S, T) − V(S, T)]| 6 |λd+1|
√

tr(vol(S) − V(S,S)) tr(vol(T) − V(T , T)),

where V(A,B) = vol(A)vol(G)−1 vol(B) and where 1 = λ1 = . . . = λd > |λd+1| > . . .
are the eigenvalues of the normalized adjacency matrix of F ordered by decreasing absolute
value.

6.4 the cheeger inequality

There are two spectral results typically associated with notions of expansion in a
graph. One is the expander mixing lemma already discussed, which can be seen
as relating the two-sided spectral expansion of a graph with its edge expansion.
The other is the Cheeger inequality, which relates the one-sided spectral expansion
with the edge expansion.

Our definition of E(S, T) for two subsets of vertices in a matrix-weighted graph
suggests a way to generalize the Cheeger inequality. We define a Cheeger constant
for a subset S of the vertices of a kI-regular matrix-weighted graph as

h(S) =
tr
[
E(S,S)

]
min(|S| ,

∣∣S∣∣) .

We can compute E(S,S) using the Laplacian matrix:

E(S,S) = ITSLIS =

(
IS −

|S|

n
IG

)T
L

(
IS −

|S|

n
IG

)
,

while (IS −
|S|
n IG)

T (IS −
|S|
n IG) = (|S|+

|S|2

n − 2
|S|2

n )I =
|S||S|
n I.
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Figure 6.1: Some counterexamples to the right hand side of a sheaf Cheeger inequality.

Applying a generalization of the Courant-Fischer-Weyl theorem, we have

d∑
i=1

λd+i 6
tr(ITSLIS)

tr((IS −
|S|
n IG)

T (IS −
|S|
n IG))

=
trE(S,S)

d
|S||S|
n

6 2
trE(S,S)

dmin(|S| ,
∣∣S)∣∣ ,

where we order the eigenvalues λi of L in increasing order. This is the “easy” side
of a Cheeger-type inequality:

1

2

d∑
i=1

λd+i 6
hG
d

.

To get an upper bound on this Cheeger constant, we need a way to round an
eigenvector (or block of eigenvectors) to an indicator matrix on vertices of the
graph.

Unfortunately, this is not possible. To be more precise: there exists a matrix-
weighted graph F with a nonconstant section x such that x cannot be rounded
to a vector of the form v⊗ y for some v in the vertex stalk. Consider the sheaf
illustrated in Figure 6.1.

Note that there is a nonconstant section whose values on vertex stalks are,
counterclockwise from the lower right,[

0

1

]
,

[
1

0

]
, and

[
1

1

]
.

Suppose there were a vector of the form v⊗ y, for some v ∈ R2 and y ∈ R3,
with y ⊥ 1, such that LF(v⊗ y) = 0. Consider the graph Gv whose edge weights
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are vTAijv. Note then that (v⊗ y)TLF(v⊗ y) = yTLGvy, where LGv is the graph
Laplacian of Gv. Then there exists some y such that LF(v⊗ y) = 0 only if Gv is not
connected. This requires that there be some cut set of the underlying graph such
that v lies in the kernel of every restriction map corresponding to an edge in the cut.
We can see by inspection that no such v exists for the sheaf under consideration.

A similar argument applies to the second sheaf in Figure 6.1. This sheaf has a
two-dimensional space of non-constant sections, but no sections which are constant
and supported on a subgraph. An indicator matrix IS for a proper subset of vertices
of the graph such that tr(ITSLFIS) = 0 exists if and only if the graph with edge
weights tr(Aij) is disconnected. But this only happens if there is already a cutset of
edges whose edge weights are Aij = 0.

The observant reader will note that these counterexamples are quite similar to
the counterexample given to the converse to Proposition 5.2.1 on a necessary but
not sufficient condition for a matrix-weighted graph to be an approximation to the
constant sheaf. In a sense, the left-hand Cheeger inequality is a spectral version of
this condition, and the failure of the right-hand inequality to hold results from the
existence of sheaves which satisfy the conclusion of Proposition 5.2.1 but fail to be
approximations to the constant sheaf.

The conclusion we must draw is that for matrix-weighted graphs, combinatorial
measures of expansion will tend to be weaker than spectral measures of expansion.
We cannot control the spectrum of a matrix-weighted graph by looking only at
edge cuts.



7
D Y N A M I C S

7.1 the heat equation

The Laplacian on a domain in Rn or on a Riemannian manifold has many asso-
ciated partial differential equations. The simplest, the Laplace equation ∆f = 0,
inspired our study of harmonic extension in Section 3.1. Adding a time dimension
brings us to the heat equation df

dt = −∆f. These also have immediate analogues
for sheaf Laplacians. The homological properties of the sheaf Laplacians means
trajectories have a nice interpretation.

Proposition 7.1.1. Let x(t) be a solution to the sheaf heat equation dx
dt = −∆kFx with

initial condition x(0) = x0. Then limt→∞ x(t) is equal to the harmonic k-cochain nearest
to x0 in the `2 sense.

Proof. We may write x(t) = e−t∆
k
Fx0. The sheaf Laplacian ∆kF is, by construction,

positive semidefinite, and we can diagonalize it into ∆kF = U∗DU for U unitary and
D diagonal and nonnegative. Then e−t∆

k
F = U∗e−tDU. As t→∞, e−tD converges

to a diagonal matrix with zeros corresponding to every positive entry of D and a 1
corresponding to every zero entry of D. Thus, e−t∆

k
F converges to the orthogonal

projection onto the kernel of ∆kF, so x(t) converges to the orthogonal projection of
x0 onto Hk(X;F).

Naturally, similar results hold for differential equations using only the up- or
down-Laplacians. Since the sheaf Laplacian may be computed locally—to compute
(∆kx)σ one only needs information about x at cells which are adjacent to it in
the cell complex—this offers a distributed way to find representatives of sheaf
cohomology classes. This property of the heat equation will be the foundation of
many applications in Part II. The rate of convergence to a global section is governed
by the smallest nonzero eigenvalue of ∆k. The larger this eigenvalue, the faster the
convergence.

7.1.1 Boundary conditions

We may also solve the heat equation with boundary conditions: choose a subcom-
plex B ⊆ X and fix a k-cochain on B, then use the Laplacian to determine derivatives
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for cells not in B. Perhaps unsurprisingly, trajectories of the heat equation converge
to the harmonic extension of their boundary conditions. If U = X \B, the relevant
differential equation may be written

d

dt
xU = −∆k[U,U]xU −∆k[U,B]xB.

The stationary points of this differential equation are precisely where (∆kx)U = 0.
Linearizing about a stationary point turns the equation into

d

dt
xU = −∆k[U,U]xU,

which is stable, because ∆k[U,U] is a principal submatrix of a positive semidefinite
matrix and hence is positive semidefinite. If the harmonic extension of xB is
not unique, x will converge to the harmonic extension of xB nearest the initial
condition, since ker∆k[U,U] is preserved by the flow. That is, ˙xU ⊥ ker∆k[U,U],
since im∆k[U,B] ⊆ im∆k[U,U] ⊥ ker∆k[U,U]. Since the portion of the initial
condition lying in ker∆k[U,U] is undisturbed, the limit is the closest k-cochain
possible satisfying the harmonic extension.

7.1.2 Input-Output dynamics

Suppose we have a linear system

ẋ = −∆kFx+ iBu (7.1)

y = πCx (7.2)

where u is an input variable and y an output variable, and iB : Ck(B;F)→ Ck(X;F)
is the inclusion map of a subcomplex, and πC : Ck(X;F) → Ck(C;F) is the
projection map onto a subcomplex. This is a dynamical system on X with inputs
given at cells in B and outputs observed at cells in C. What properties does this
control system have? One such desirable property is controllability: given a target
state xT , does there exist an input function u(t) that steers the state to xT in a
finite amount of time? A slightly looser condition is stabilizability, which ensures
controllability in the limit. A system is stabilizable if any subspace of the state
space which is not asymptotically stable to the origin is controllable. For the heat
equation, most of the state space is asymptotically stable, and we only need to
worry about the kernel of ∆k.

Proposition 7.1.2. The system (7.1) is stabilizable if Hk(X,B;F) = 0.
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Proof. Stabilizability is equivalent to the condition that the matrix[
(−∆kF − λI) iB

]
be full rank for all λ with nonnegative real part. The eigenvalues of −∆kF are real
and nonpositive, so this matrix is already full rank for all necessary values of λ
except possibly 0. Suppose now that Hk(X,B;F) = 0. This implies that iB induces
a surjective map Hk(B;F) → Hk(X;F), which means that for any y ∈ ker∆kF '
Hk(X;F), there exists some x ∈ Ck(B;F) such that 〈x,y〉 6= 0, and hence im iB and
im∆kF span Ck(X;F), so that the required matrix is full rank.

Every statement about linear control systems has a dual statement about the
dual system. Since the Laplacian control system is essentially self-dual (simply
swap the roles of B and C), we have the corresponding result

Proposition 7.1.3. The system (7.1) is detectable if Hk(X,C;F) = 0.

Detectability is a generalization of observability—it requires that we be able
to determine the state of the system up to an element of the stable subspace. In
this case, it means that we can deduce the nearest harmonic k-cochain to the
state. Combining detectability and stabilizability means we can design an observer-
controller pair that will steer the system asymptotically to any desired harmonic
k-cochain.

7.2 dynamics of sheaves

The algebraic structure of a cellular sheaf, described by coboundary matrices,
offers a new nu opportunity for dynamics: rather than modify a cochain in a way
depending on the sheaf structure, we can modify the sheaf itself based on some
known cochain. We will begin with the simplest case: a sheaf F on a graph G.
Consider the dynamics on restriction maps of F given by

d

dt
FvPe = −(δFx)ex

∗
v. (7.3)

Proposition 7.2.1. The trajectories of 7.3 initialized at a sheaf F0 on G converge to a sheaf
F ′, which is the minimizer of d(F0,F ′) subject to the constraint that x ∈ H0(G;F), where
the distance between sheaves is measured by

d(F,F ′) = ‖δF − δF ′‖2F =
∑
σPτ

‖FσPτ −F ′σPτ‖2F.
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Proof. The stationary points of this dynamical system are precisely those where
x ∈ ker δ0F, that is, those defining a sheaf for which x is a global section.. For a
given edge e, the derivative of δ0e, the block row of δ0F corresponding to e, is equal
to −δex∂ex

∗
∂e, where x∂e =

∑
vP1 e

xe ∈ C0(G;F). The matrix x∂ex∗∂e is positive
semidefinite, and acts on the space of matrices δe with the correct sparsity pattern
by δe 7→ δex∂ex

∗
∂e. The kernel of this operator is precisely the set of δe for which

δex = 0; equivalently, each row of δe must be in the kernel of x∂ex∗∂e. Since the
dynamics act on each row of δe separately, we apply the same argument as for
Proposition 7.1.1 to see that the limit is the projection of each row of δe onto the
kernel of x∂ex∗∂e, and hence the projection of δe onto this kernel in the Frobenius
norm. Since there is no interaction between edges and the squared Frobenius norm
is additive, this is the minimizer of the total distance.

The sheaf dynamics equation (7.3) is a sort of dual to the heat equation. It is
a linear diffusion acting independently on the restriction maps corresponding to
each edge. We can construct similar dynamics with multiple 0-cochains xi, with
similar behavior where each xi is a global section of the limit. Of course, it may be
the case that the limiting sheaf is in fact the sheaf with all restriction maps zero.

Dually to (7.3), we might consider some y ∈ C1(G;F) and the dynamics

d

dt
FvPe = −yey

∗
eFvPe.

In the limit, y will be in H1(G;F), but we have no guarantees about optimality. All
that this differential equation does is modify F so that ye becomes orthogonal to
imFvPe for all e. This guarantees that y is orthogonal to im δ0, but this is clearly
not in general the nearest sheaf satisfying this condition.

Things get a bit trickier when we consider higher-dimensional complexes. While
the requirement that restriction maps commute is trivial when the base space is a
graph, this constraint becomes trickier to manage as the dimensionality increases.
If we restrict ourselves to modifying a single layer of restriction maps, however,
the commutativity constraint remains a linear condition. Indeed, the condition that
δkδk−1 = 0 for all k is equivalent to the commutativity of the diagram a cellular
sheaf defines in Vect. To see this, note that

(δkδk−1xσ)τ =
∑

σP1 χP1 τ

[σ : χ][χ : τ]FχPτFσPχxσ.

There are precisely two cells χ lying between σ and τ, and the conditions for
the incidence relation ensure that their corresponding terms have coefficients of
opposite signs, so this equation is equivalent to FχPτFσPχxσ = Fχ ′PτFσPχ ′xσ,
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which, if it holds for all xσ, is precisely the requirement for the restriction map
FσPτ to be well defined. As a result, if we wish to modify the restriction maps
collated in δk while preserving the fact that these define a cellular sheaf, we only
need to preserve the equations δkδk−1 = 0 and δk+1δk = 0.

Suppose X is a (k+ 1)-dimensional complex, and consider the dynamics

d

dt
δkσ = −δkσ(∆

k
−[∂σ,∂σ] + x∂σx∗∂σ), (7.4)

which for k = 0 reduces to (7.3).

Proposition 7.2.2. Suppose x ∈ ker∆k−. The trajectories of (7.4) initialized at a sheaf F0
converge to the nearest sheaf to F0 such that x ∈ ker∆k.

Proof. First note that the stationary points of this dynamical system are precisely
those where δkδk−1 = 0 and δkx = 0. Naturally δkx = 0 if and only if δkσx∂σx∗∂σ =

0 for all σ of dimension k+ 1. Similarly, δkδk−1 = 0 if and only if δkσδ
k−1
∂σ (δk−1∂σ )∗ =

δkσ∆
k
−[∂σ,∂σ] = 0 for all σ. If x ∈ ker∆k−, then x∂σ ∈ ker∆k−[∂σ,∂σ] for all σ. (This

fact relies on the structure of the cell complex and is not true if we replace ∆k−
with ∆k+.) But then this means that ker(∆k−[∂σ,∂σ] + x∂σx∗∂σ) = ker(∆k−[∂σ,∂σ])∩
ker(x∂σx∗∂σ), so that δk is an equilibrium of (7.4) if and only if δkδk−1 = 0 and
δkx = 0.

By our previous considerations, then, trajectories converge to the orthogonal
projection onto the kernel of this operator; this is the intersection of the space of δk

defining commuting restriction maps given δk−1 and the space of δk with δkx = 0.
Thus, the limit is the nearest sheaf to F0 with x ∈ ker∆k.

Of course, it is possible to combine the two processes, for a diffusion process
acting jointly on the structure maps and the data:

d

dt
x = −α(δk)∗δkx

d

dt
δkσ = −βδkσ(∆

k
−[∂σ,∂σ] + x∂σx∗∂σ)

(7.5)

These systems are most immediately interesting when applied to 0-cochains on
a sheaf on a graph G. One process tries to find the nearest global section to x0,
while the other tries to find the nearest sheaf for which x is a global section. When
α = β = 1, this is gradient descent on the function

V(x, δ) =
1

2
〈δx, δx〉
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with respect to both x and δ, where the sparsity pattern of δ is constrained to
respect the underlying graph. For arbitrary α,β > 0, V is still a Lyapunov function:

V̇(x, δ) = x∗δ∗δẋ+ x∗δ∗δ̇x

= −αx∗δ∗δδ∗δx−βx∗δ∗Pδ(δxx
∗)x

= −αx∗(δ∗δ)2x−β
∑
e

x∗∂eδ
∗
eδex∂ex

∗
∂ex∂e.

Here, Pδ is the projection from Hom(C0,C1) to the space of matrices with the
correct sparsity pattern to be a coboundary map for a sheaf on G. The first term
is nonpositive, and is negative whenever δx 6= 0, and the second term is negative
whenever δex∂e 6= 0 for some e. Thus V̇ is negative except on the set of x and
δ where δx = 0, where it vanishes. Thus, trajectories of the combined dynamics
converge to pairs consisting of a sheaf and a section.

The set of stationary points forms a degree-2 algebraic variety; since this is
a connected set, there is no hope of global exponential stability of any given
equilibrium. However, nonsingular points in this variety are Lyapunov stable. This
is straightforward: the nonsingular points form a manifold, which is equal to the
center manifold of the dynamical system at these points.

For most graphs and choices of stalk dimensions, “most” points of the variety
of stationary points have ker δ = 0, since there are many more full-rank choices
for δ than rank-deficient ones. However, there are many initial conditions whose
trajectories converge to a δ with nontrivial kernel, i. e., a sheaf with nontrivial
sections.

Proposition 7.2.3. If one of the diagonal blocks of αδ∗0δ0 − βx0x
T
0 fails to be positive

semidefinite, the trajectory of (7.5) converges to a point (x, δ) with x 6= 0.

Proof. Write M = αδ∗δ−βxx∗ and consider

d

dt
M =

d

dt
αδ∗δ−βxx∗

= α(−βPδ(δxx
∗)∗δ−βδ∗Pδ(δxx

∗)) −β(−αxx∗δ∗δ−αδ∗δxx∗)

= −αβ[(δ∗Pδ(δxx
∗))∗ + δ∗Pδ(δxx

∗)] +αβ[(δ∗δxx∗)∗ + δ∗δxx∗].

The diagonal block of δ∗Pδ(δxx∗) corresponding to a vertex v is equal to (δ∗δxx∗)[v, v],
since the sparsity pattern of the relevant block row of δ∗ is the same as the sparsity
pattern imposed by the projection Pδ. Thus, the diagonal blocks of the two terms in
the derivative cancel, giving d

dt diag(M) = 0. Hence, if M[v, v] is indefinite at t = 0,
it is indefinite for all t, which implies that xx∗ cannot go to zero, since otherwise
M would converge to δ∗δ, which has by definition positive semidefinite diagonal
blocks.
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In particular, this ensures that for a given initial δ and x, we can always rescale
the initial condition (or the weighting parameters α and β) so that the limiting
sheaf has a nontrivial global section. We can also control some other quantities
during the evolution of these combined dynamics.

Proposition 7.2.4. The quantities ‖δ‖2F, ‖x‖2, ‖δx‖2, and ‖δx‖
2

‖x‖2 are nonincreasing un-
der (7.5).

Proof. Our Lyapunov function for these dynamics is V = 1
2‖δx‖

2, so this quantity
is clearly nonincreasing. We evaluate the other derivatives:

d

dt
‖δ‖2F =

d

dt
tr(δ∗δ)

= −β tr(δ∗Pδ(δxx∗) + Pδ(δxx∗)∗δ)

= −2β
∑
e

(x∗eδ
∗
eδexe)x

∗
exe 6 0.

d

dt
‖x‖2 = d

dt
x∗x

= −α(x∗δ∗δx+ (δ∗δx)∗x)

= −2αx∗δ∗δx 6 0

Combining these, we have

d

dt

‖δx‖2

‖x‖2
=
‖x‖2 ddt‖δx‖

2 − ‖δx‖2 ddt‖x‖
2

‖x‖4
.

This is bounded above by

−2α‖x‖2(αx∗(δ∗δ)2x) + ‖δx‖22α(x∗δ∗δx)
‖x‖4

6 2α

[(
x∗δ∗δx

‖x‖2

)2
−
x∗(δ∗δ)2x

‖x‖2

]
.

To see that the value inside the brackets is always negative, take ‖x‖ = 1 and
diagonalize δ∗δ to get the equivalent inequality

∑
i

λ2i xi >

(∑
i

λixi

)2
,

for λi, xi > 0 and
∑
i xi = 1; this is simply Jensen’s inequality for the convex

function λ 7→ λ2.
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The fact that ‖δx‖
2

‖x‖2 is decreasing means that x becomes a section of F at least as
quickly as it approaches zero.

Proposition 7.2.5. Let (x0, δ0) be a point with δ0x0 = 0, such that for some neighborhood
U of (x0, δ0), the set of stationary points of (7.5) intersected withU is a manifold. Then (7.5)
is Lyapunov stable at (x0, δ0).

Proof. We can identify the stationary points in U with the center manifold at
(x0, δ0). The tangent space at (x0, δ0) to the space of stationary points is kerD(δx),
since the space of stationary points is precisely those for which δx = 0. We have
D(δx) = δ0x+ δx0), which characterizes kerD(δx). Meanwhile, the linearization
of (7.5) at (x, δ) is

ẋ = −α(δ∗0δx0 + δ
∗
0δ0x)

δ̇e = −β [(δe)
∗(x0)∂e(x0)

∗
∂e + (δ0)

∗
ex∂e(x0)

∗
∂e]

Thus ẋ = 0 if and only if (x, δ) ∈ kerD(δx) and similarly for δ̇, and hence the
stationary points form a center manifold at (x0, δ0). The center manifold theo-
rem [Kel67] then says that stability at this point is equivalent to stability when
restricted to the center manifold. But the dynamics on the center manifold are
constant, and hence Lyapunov stable.

One would expect Lyapunov stability to also hold at singular points of the variety
of stationary points, but the center manifold theorem is not sufficient to show this.

7.3 nonlinear laplacians

The heat equation on a graph can be thought of in terms of a quadratic potential
on each edge of the graph, pushing the values at the vertices toward the minimizer
for that potential. That is, since Lx is the gradient of 12‖δx‖

2, the heat equation is
gradient descent with respect to this function. What happens when the potential
function is nonquadratic, or perhaps even nonconvex? Consider a general potential
function V(x) = 1

2

∑
eφe((δx)e), for some set of functions φe : F(e) → R. The

differential of this function with respect to x is

dV(x)(y) =
∑
e

(∇φe)(δx)e(δy)e.

Its gradient is then represented by ∇Vx = δ∗ ◦∇φ ◦ δx, where ∇φ is the gradient
of φ : C1 → R given by φ(y) =

∑
eφe(ye). We can interpret ∇V as a sort of

nonlinear degree-0 Laplacian, which we will denote LφF . This nonlinear Laplacian
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maintains its local computability, since it may be calculated by simply adding an
extra edgewise computation between the components of the linear Laplacian.

If each φe is radially symmetric, with φe(ye) = ψe(‖ye‖2) for some ψe :

[0,∞)→ R, then ∇φe(ye) = ψ ′e(‖ye‖2)ye. In this situation the nonlinearity in LφF
amounts to a scaling factor of ψ ′e(‖(δx)e‖2) on each edge. If ψ ′e(z) is zero for z > D,
the nonlinear Laplacian ignores sufficiently large discrepancies over edges. The
corresponding gradient descent is a thresholded consensus dynamics on cochains
of F.

7.3.1 Threshold dynamics

Proposition 7.3.1. Suppose we have φe(ye) = ψe(‖ye‖2) for some ψe : [0,∞) → R,
with ψ ′e(z) = 0 for z > De and ψ ′e(z) > 0 for 0 < z < De. Then, for any x ∈ C0(G;F),
L
φ
F(x) = 0 if and only if either x ∈ H0(G;F) or, for every edge e with with δex 6= 0,
‖δex‖2 > De.

Proof. If x ∈ H0(G;F), then δx = 0, and hence ∇φ(δx) = 0, since ∇φ(0) = 0. More
generally, if ‖δex‖2 > De, then ∇φe(δex) = ψ ′e(‖δex‖2)δex = 0.

On the other hand, if LφF(x) = 0, we have ∇φ(δx) ∈ ker δ∗, or equivalently,
∇φ(δx) ⊥ im δ. In particular, we must have 〈∇φ(δx), δx〉 = 0. Setting y = δx, we
have

〈∇φ(y),y〉 =
∑
e

〈∇φe(ye),ye〉 =
∑
e

〈ψ ′e(‖ye‖2)ye,ye〉 =
∑
e

ψ ′e(‖ye‖2)‖ye‖2.

Since ψ ′e(‖ye‖2) > 0 unless ‖ye‖2 > De or ‖ye‖2 = 0, this sum cannot be zero
unless one of these conditions holds for every edge.

This proof holds as well if De = ∞, in which case LφF vanishes precisely on
H0(G;F). As a result, we have a large class of local nonlinear dynamics on C0(G;F)
that converge to sections of F, given by any set of strictly increasing functions ψe.
That is, the nonlinear heat equation

ẋ = −LφF(x)

has trajectories that converge to global sections of F. Further, because LφF(x) ∈
im δ∗ ⊥ ker δ for every x, these trajectories still preserve the projection of the initial
condition onto H0(G;F), and hence converge to the nearest global section to the
initial condition.

Returning to the case of finite De, there are additional stationary points. In a
neighborhood of one of these stationary points, the nonlinear heat equation behaves
like a standard heat equation over a different sheaf. For x ∈ C0(G;F), define Fx
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to be the quotient sheaf of F with all stalks over edges e with ‖δex‖2 > De
set to zero. If ‖δex‖2 6= De for all e, there is a neighborhood U of x for which
L
φ
F(y) = L

φ
Fx

(y) for all y ∈ U. We can think of these thresholds as partitioning
C0(G;F) into domains on which consensus dynamics for different sheaves operate.
Of course, these domains are not isolated—the dynamics can transport the state
from one region to another. However, on a sufficiently small region around a
generic equilibrium, the dynamics stays in its initial region. In other words, most
equilibria are Lyapunov stable, meaning that trajectories have small perturbations
for sufficiently small perturbations of the initial state.

Proposition 7.3.2. Let LφF(x) = 0, with ‖δex‖2 6= De for all e. Then x is Lyapunov
stable as a fixed point of the threshold heat equation ẋ = −LφF(x). That is, there exist
arbitrarily small neighborhoods U,U ′ of x such that all trajectories beginning in U ′ stay
in U and converge to a section of Fx.

Proof. Since x is not on the boundary of the region on which the dynamics are given
by LφFx , the center manifold passing through x is precisely the space H0(G;Fx)
of global sections of Fx. Further, linearizing at x shows that the only non-central
manifold is stable. The center manifold theorem [Kel67] then implies that stability
of x is equivalent to its stability in the center manifold. But the dynamics are trivial
in the center manifold—they are simply constant. Therefore x is Lyapunov stable.

7.3.2 Other potential functions

Another simple choice for φ is given by a 1-cochain of F. If y ∈ C1(G;F), we can
define φe(xe) = ‖xe − ye‖2. Then ∇φ(δx) = δx− y, which is zero if and only if
δx = y. Further, LφF(x) = 0 if and only if (δx− y) ⊥ im δ, and if y ∈ im δ this can
only happen if δx = y, so the stationary points of the nonlinear heat equation are
precisely the cochains x with δx = y. If y /∈ im δ, the stationary points are those
such that δx is equal to the orthogonal projection of y onto im δ, i. e.the minimizers
of ‖δx− y‖2. Equilibria of this nonlinear heat equation form an affine subspace of
C0(G;F) corresponding to a shifted copy of H0(G;F). We can therefore use these
Laplacians to solve distributed least squares problems for the sheaf coboundary
operator.

Another choice for φ is to choose some collection of edges EN of G, and let
φe = −‖δex‖2 for e ∈ EN and φe = ‖δex‖2 for e /∈ EN. The corresponding
operator LφF is linear, and is equal to δ∗Sδ, where Se = − idF(e) for e ∈ EN and
Se = idFe for e /∈ EN. Sections of F are in the kernel of LφF , but this matrix is
no longer necessarily positive semidefinite. The corresponding heat equation can
be interpreted as a competition between edges in EN, which seek to increase the
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discrepancy of x on their endpoints, and edges not in EN, which seek to make the
values of x at their endpoints more consistent.

Suppose EN is a cutset of G, dividing G into G1 and G2. If the natural map
H0(G,G2;F)→ H0(G1;F) is not surjective, LφF is indefinite. To see this, take some
nontrivial x ∈ H0(G1;F) which is not in the image of this map. Then, extending x
by zero to the rest of G, we see that δex 6= 0 for some e ∈ EN, while δex vanishes for
any e /∈ EN. Therefore, 〈x,LφFx〉 =

∑
e∈EN〈δex,−δex〉, which is negative because

there is at least one nonzero term.

7.4 random walks

The heat equation on Rn is closely connected with the behavior of random walks,
since it defines the evolution of a probability distribution for the location of the
random walker. Similarly, the heat equation on a graph describes the evolution
of the probability distribution for a continuous-time random walk process on the
graph, and the adjacency matrix describes the evolution of a discrete-time random
walk. These interpretations do not directly extend to the heat equation on a sheaf.

Discrete-time random walks on O(n)-bundles have been considered previ-
ously [CZ12; Kem15]. Essentially, a random walk is run on the underlying graph,
and an element in the fiber follows this walk via parallel transport. Thus, the state
of the random walk at any given point in time is a vector x[t] = xv ∈ F(v) = Rn.
At each step, a neighbor u of v is chosen at random, and the next state is then
F−1
uPeFvPexv ∈ F(u). The normalized adjacency matrix AD−1 = I− LD−1 rep-

resents this process, although it no longer gives probability distributions for the
random walk. Rather, we have E[x[t+ 1]] = AD−1E[x[t]].

Of course, there is no need to restrict specifically to O(n)-bundles in this def-
inition; we can similarly define a random walk for any discrete vector bundle
on a graph. The relevant evolution matrix is no longer the normalized adjacency
matrix, however, since restriction maps are not unitary. Rather, we have a walk
matrix WF with WF[u, v] = d−1v F−1

uPeFvPe. The degree dv here is scalar, given by
the underlying graph. Again, E[x[t+ 1]] = WFE[x[t]]. If D−1x is a section of F,
then x is a stationary distribution for this random walk.

Indeed, this construction extends a bit further. Suppose we have a cosheaf F̂ on
a graph, where all extension maps are surjective. We define a similar random walk
on F̂, driven by a random walk in the underlying graph. The difference, however, is
that parallel transport of a vector over an edge is no longer uniquely defined, which
gives an additional entry point for randomness. We need to decide how to pull
an element of F̂(v) back to an element of F̂(e) for vP e. We do this by specifying
a probability distribution PvPe on ker F̂vPe ⊆ F̂(e) for every incident pair. Then,
we pull xv ∈ F̂(v) back to F̂(e) by adding an independent random variable YvPe
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distributed as PvPe to the least-squares solution xe to the problem F̂vPexe = xv.
We then push down to the other end of the edge via the map F̂uPe. Thus, the next
iteration has x[t+ 1] = F̂uPe(F̂

†
vPexv + YvPe). If we choose these distributions so

that E[YvPe] = 0, the evolution of the expectation is again described by a walk
matrix WF̂ with WF̂[u, v] = d−1v F̂uPeF̂

†
vPe. If D−1x is a harmonic 0-chain of F̂, x

is again a stationary distribution under the random walk.
Suppose now that f : H → G is a graph morphism where all vertices map

to vertices and all edges map to edges. Consider the pushforward cosheaf f∗R,
where R is the constant cosheaf on H. We can therefore interpret the elements of
C0(G; f∗R) as describing functions on the vertices of H, and in particular, there is
some subset corresponding to probability distributions on the vertices of H. What
happens if we run a random walk on f∗R begun at f∗1v, for some v ∈ H? At
the first step the state is f∗1v ∈ f∗R(f(v)). We will choose uniformly at random a
neighbor of f(v), and then pull back to f∗R(e), where e is an edge in G incident
to f(v). This space has a natural basis that includes representatives for a number
of edges incident to v in H, and the preimage of f∗1v lies within the subspace
spanned by these representatives. The least-squares preimage distributes the weight
of f∗1v equally across these representatives. Thus, if there are dve edges ei in H
incident to v lying over e ∈ G, f∗1v pulls back to d−1ve

∑
f∗1ei ∈ f∗R(e). If we

let Yf(v)Pe = 0 be deterministic, we can interpret the pulled-back cochain as a
probability distribution on the fiber of e. The map f∗RuPe preserves probability
distributions, so we can interpret the next step as not just a value in f∗R(u), but as a
probability distribution on f−1(u). This interpretation is preserved over subsequent
steps, so the random walk on f∗R determines a random walk on H, driven by a
random walk on G. In general this is not the same as the uniform random walk on
H, since in essence an edge of G is first chosen and then an edge in H lying over
that edge is chosen, which means that neighbors are not uniformly selected in H.

In general, sheaf Laplacians will not have much to say about these sorts of
holonomic random walks, because their evolution is governed by the walk matrix
WF̂. Only in the case of O(n)-bundles are these equivalent, and then the walk
matrix is equal to I− LD−1.
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A P P L I C AT I O N S
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D I S T R I B U T E D C O O R D I N AT I O N

8.1 distributed consensus

The problem of getting a network of agents to agree on some data or policy without
centralized coordination has been a subject of intense interest for the past several
decades. This consensus problem can be addressed with methods from spectral graph
theory and control theory. A core tool is distributed averaging: agents take a series of
steps averaging their local values with those of their neighbors. Given edge weights
Aij, the agents update their state via

xi[t+ 1] =
∑
i∼j

Aijxj[t].

The properties of adjacency matrices of graphs are obviously important for un-
derstanding these distributed averaging algorithms [OM04; Boy+05; OT11]. Com-
plications can be larded atop this model, including time-varying networks, time
delays, and noisy communication, and this general framework finds applications
in many fields [JLM03; GS10; Bul19].

Graph Laplacians are also a useful tool for the analysis and construction of
such algorithms. As was noted in Chapter 7, trajectories of the heat equation
ẋ = −Lx corresponding to a graph Laplacian converge to the projection of the
initial condition onto the kernel of L. This kernel is spanned by the constant vector
1, so in fact the trajectories converge to a global consensus on the average of
the initial values. The Laplacian flow is therefore a continuous-time distributed
averaging process.

The sheaf Laplacian flow suggests an immediate generalization to a setting
where the desired distributed state is not a constant value, but rather a section of
a sheaf. In the simplest case, this might just be a particular set of ratios between
values at different vertices, realized by the space of sections of an appropriate line
bundle. Here the kernel of LF is spanned by a single non-constant vector. However,
the sheaf formulation extends to significantly more complex subspaces, like the
space of trajectories of a distributed linear system as in Chapter 10.2.1. If a vector
space can be realized as the space of sections of a sheaf on an appropriate graph,
the sheaf Laplacian flow gives an algorithm for distributed consensus on this vector
space.
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The problem of distributed algorithms for a graph G that converge to projections
onto a given subspace of RV(G) has previously been approached from a direct
discrete-time perspective [BSB09; LBS19; NVS19]. Typically the subspace considered
is a space spanned by eigenvectors of the graph Laplacian with small eigenvalues—
in graph signal processing terms, a subspace of low-frequency signals. The sorts of
problems addressed by these methods are mostly orthogonal to those which can
be addressed with sheaf Laplacians. The space of global sections of a sheaf on a
graph is typically uninteresting unless vertex stalks have dimension greater than
1. For a sheaf with all vertex stalks 1-dimensional, H0 can only have dimension
greater than 1 if there are localized sections; one cannot construct a sheaf on G
whose sections are the space of low-frequency vertex signals on G.

To produce an implementable algorithm from the sheaf heat equation, we need
to have a discrete-time version of the dynamics. The easiest way to do this is to use
an Euler-type discretization:

x[t+ 1] = x[t] −αLFx[t].

In essence, we use the matrix TF = I− αLF as a linear update rule for the state.
We need to choose α properly to ensure convergence. Every eigenvalue of TF is of
the form 1−αλ for some eigenvalue λ of LF. For the discrete-time iteration to be
stable, we need to ensure that these eigenvalues all lie in (−1, 1]. If λ2 is the smallest
nonzero eigenvalue of LF and λmax is the largest eigenvalue of LF, we therefore
need α < 2/λmax. The convergence rate is determined by the nontrivial eigenvalue
farthest from 0. Depending on α, this may be either 1− αλmax or 1− αλ2. The
choice of α optimizing the convergence rate is α = 2

λ2+λmax
, giving a maximal

eigenvalue of λmax−λ2
λmax+λ2

.

8.1.1 Optimizing the convergence rate

The inner products on edge stalks of F are required to construct the Laplacian, but
they do not affect the long-term limiting behavior of the heat equation. We are
therefore free to modify them in order to influence shorter-term behavior like the
convergence rate. For graph Laplacian consensus, doing this amounts to choosing
edge weights to optimize convergence speed, which has been studied by Xiao
and Boyd [XB04] as a semidefinite program. Other formulations apply to natively
discrete-time consensus algorithms [OT11].

A slight generalization of Xiao and Boyd’s approach lets us optimize the conver-
gence rate for sheaf consensus. Given a matrix representation B of the coboundary
operator δ, we can change the effective inner product on C1 by choosing a block
diagonal positive semidefinite matrix W and using the Laplacian LWF = BTWB.
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In essence, we replace the standard inner product on C1(G;F) with the inner
product xTWx. In order to optimize the convergence rate, we want to keep the
smallest and largest nontrivial eigenvalues of BTWB as close to 1 as possible. The
largest eigenvalue can be controlled by a semidefinite bound BTWB � λI, but λ2
is a bit trickier to control. Let ΠH0 be the orthogonal projection onto H0(G;F). If
λ(I−ΠH0) � BTWB, then λ2 > λ, since this controls the spectrum of BTWB on the
orthogonal complement of H0(G;F). A bit of reformulation gives us the following
semidefinite program:

min
t,We

t

s.t. We � 0 ∀e
(1+ t)I−BT diag(We)B � 0
BT diag(We)B+ΠH0 − (1− t)I � 0

8.2 flocking

Here is a simple example of a nontrivial sheaf useful in a plausible coordination
problem. Consider a collection of autonomous agents in R3, each of which has its
own coordinate system with respect to which it measures the world. Agents can
calculate the bearings to other nearby agents in the form of unit vectors represented
in their own reference frames, but know nothing about their neighbors’ reference
frames. The problem is to have the agents agree on a consensus direction in the
global frame, represented in their own local reference frames. Such a consensus
would be useful perhaps in order for the agents to agree on a common direction of
travel.

The data of this problem forms a sheaf F on the neighborhood graph G of the
agents. The vertex stalks are F(v) = R3, containing a vector in the local frame,
while the edge stalks are F(e) = R1, representing the direction along the bearing
between the agents at either end of the edge. Let buv ∈ R3 be the unit vector
pointing from u to v, represented in u’s reference frame. For an oriented edge
e = u ∼ v, the restriction map FuPe is given by the matrix bTuv, while the restriction
map on the other end side is given by −bTvu. (Note that this requires the agents
to agree on an orientation. One way to ensure this is if every agent has a unique
serial number, in which case the ordering of numbers can induce an orientation.)

What are the sections of F? Note that by passing to a unitarily isomorphic sheaf,
we may assume that all the local reference frames are in fact equal. In this situation
we hope that only the constant cochains of F would be sections, since these would
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correspond exactly to globally consistent directions. However, this is not quite true:
there are a few extra sections to reckon with.

It is perhaps easier to understand H0(G;F) by considering the dual cosheaf F̂.
We can interpret this cosheaf as a subcosheaf of the constant cosheaf R3 on G.
Elements of vertex stalks of the cosheaf correspond to forces exerted on vertices of
G, while elements of the edge stalks correspond to stresses experienced along the
lines connecting the vertices. The boundary map ∂ : C1(G; F̂)→ C0(G; F̂) takes an
assignment of stresses to each edge of G and gives the net force it effects on each
vertex of G. The cosheaf homology H0(G; F̂) = C0(G; F̂)/ im∂ is isomorphic to
H0(G;F), and represents systems of net forces on the vertices of G that cannot be
imposed by a system of stresses acting along the edges of G. There is always at least
a six-dimensional space of such forces: those that generate uniform translations
of the vertices and those that generate rotations of G. Thus H0(G;F) contains the
constant cochains, but also a three-dimensional space of spurious non-constant
sections. In other words, F is not quite an approximation to the constant sheaf R3.

One way to overcome this difficulty is to note that the space of nonconstant
sections of F depends on the configuration of the agents. If the agents change
their relative positions in a sufficiently generic way, giving a new sheaf F1, any
nonconstant section of F will not be a section of F1. Indeed, given a section x of F,
all that is necessary is for each agent v to travel a small distance in the direction xv.
This changes the bearing vector buv by a vector proportional to xv − xu, and hence
changes the restriction maps by the same amount. Thus x is also a section of F1 if
and only if (xv − xu)Txv − (xv − xu)

Txu = 0, which happens only if xv = xu, i. e.x
is a constant section.

8.3 efficient communication

A network running a consensus algorithm of the sort we have been discussing
requires a significant amount of communication between nodes. At each time step,
a pair of nodes u, v connected by an edge e must exchange messages containing
FuPexu and FvPexv, i.e two vectors in F(e). The amount of communication re-
quired at each step is thus proportional to dimC1(G;F). In the case of consensus
with respect to the constant sheaf on a graph, this communication cost is propor-
tional to the number of edges in the graph. This has made graph sparsification
an appealing tool for improving the performance of consensus algorithms. The
total time taken to converge to within ε of a section depends on the spectrum
of L as well as the amount of communication required for each step. If µ is the
spectral radius of the discrete-time consensus operator and D is the amount of
communication required at each step, the convergence rate is O(µn/D), with n the
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number of communication steps. A sparsified graph might reduce D substantially
while increasing µ only slightly, leading to an improved overall convergence rate.

For an example, consider consensus on a complete graph, with O(n2v) edges
and dominant eigenvalue µ. We can sparsify this to a graph with O(nv/ε2) edges
with dominant eigenvalue (1 + ε)µ. We wish to compare µ1/O(n2v) with ((1 +

ε)µ)1/O(nv/ε
2), or equivalently, two quantities that grow as logµ

n2v
and ε2

nv
(logµ+

log(1+ ε)). It is easy to see that the second quantity grows more slowly, so for
sufficiently large graphs, it is preferable to use a sparsified graph rather than the
all-to-all network.

The same analysis holds for using a spectrally good approximation to F to
run a generalized consensus algorithm using the sheaf Laplacian. Reducing the
dimension of C1(G;F) while keeping the spectrum of LF tightly concentrated can
improve the overall convergence rate. Applying this to the constant sheaf Rn, we
are brought to the intriguing idea that an approximation to the constant sheaf
might improve communication efficiency even more than a sparsified graph.

Consider, for instance, an expander sheaf of algebraic degree k on a graph of
degree `, and compare this with a constant sheaf on a graph of degree k. The
expander sheaf has adjacency spectral radius at least 2k`

√
`− 1 by the discussion in

Chapter 6.2.1, while the Alon-Boppana bound on the spectral radius of the graph is
2
√
k− 1. For k > 2 the expander sheaf bound is tighter. An equivalent inequality is
√
`− 1

`
6

√
k− 1

k

for 2 < k 6 `; equivalently, the function x 7→
√
x−1
x is decreasing for x > 3. The

derivative of this function is 1− x
2

x2
√
x−1

, which is negative for x > 2. The interpretation
of this fact in terms of communication efficiency for consensus networks is that for
a given communication budget per step, an expander sheaf has the possibility of
giving faster consensus than the constant sheaf on an expander graph.

Thus far we have glossed over precisely what the cost of communication is for a
step of the consensus algorithm, since this depends on the precise implementation
of the communication structure for the network. Counting the communication cost
proportional to C1(G;F) implicitly assumes that only one communication link in
the graph can be active at a time, which is not typically a very realistic model. In
most cases it is more reasonable to assume that either all links may be active at once
or that each node can only communicate over one link at a time. In the first case, the
communication cost is then proportional to maxe dimF(e), and in the second case,
it is bounded below by maxv

∑
vPe dimF(e). This suggests that merely controlling

the dimension of C1(G;F) in an approximation is not sufficient. Rather, we wish
to control dimensions of edge stalks locally. As noted in Chapter 5.3, this is a
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significantly more difficult problem. A general construction of expander sheaves
would be a partial resolution of this problem for approximations to the constant
sheaf, since the regularity requirement bounds the local dimension of edge stalks.

The problem of minimizing communication for sheaf Laplacian-based consensus
can be seen as a nonconvex generalization of the optimization problem of Sec-
tion 8.1.1. Rather than simply minimizing the nontrivial spectral radius of I− LF,
we minimize the effective convergence rate µ1/D, where D represents the amount
of communication cost per step. This amounts to an optimization problem

min t1/D

s.t. We � 0 ∀e
(1+ t)I−BT diag(We)B � 0
BT diag(We)B+ΠH0 − (1− t)I � 0

D =
∑
e

rankWe

which depends on the ranks of the edge weight matrices.
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N E T W O R K S C I E N C E A N D S H E AV E S

Network science typically focuses on graphs as models for networks. This allows
us to model the patterns of connection between nodes in a network, possibly
(in the case of weighted graphs) with some measure of intensity of connection.
Sheaves offer the potential for much richer descriptions of network structure. They
can encode the nature of relationships between nodes, not just their presence or
absence.

9.1 opinion dynamics

Social networks are one of the canonical examples of networks that arise in the
real world. For decades, social scientists have developed models for the way that
opinions change as individuals communicate in a social network. Many early
investigations were based on the simple idea that individuals linked in a social
network tend to adjust their opinions toward consensus. This led to local averaging
dynamics based on the Laplacian or adjacency matrices [Tay68; DeG74].

More sophisticated nonlinear models include the popular bounded confidence
dynamics. This model is similar to the local averaging model, but individuals have
a threshold of disagreement above which they do not take their neighbors’ opinions
into account. One famous implementation of this idea was popularized by Dittmer
and Hegselmann-Krause [Dit01; HK02]. Given a weighted adjacency matrix A, the
discrete-time evolution of an opinion distribution x proceeds as

xi[t+ 1] =
∑
j

Aij1|xi[t]−xj[t]|6δijxj[t].

This model has, at some difficulty, been extended to continuous time while main-
taining the discontinuous confidence thresholds [CF11].

Models of opinion dynamics have usually focused on single-dimensional opin-
ions, those that can be represented by a single parameter per individual in the
network. When higher-dimensional opinions have been considered, these have
typically been coupled purely independently.

Cellular sheaves offer a new way to construct principled models of opinion
networks. The communication structure within a social network can be modeled
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with a discourse sheaf on a graph, where vertex stalks represent spaces of private
opinions and edge stalks represent spaces in which discussion happens; restriction
maps then translate between privately-held opinions and public discussion. The
discourse sheaf specifies when individuals consider themselves to be in agreement:
sections of the sheaf are precisely those distributions of private opinions that agree
when mapped to the pairwise discourse spaces.

A discourse sheaf can model various new phenomena in social networks. These
include

• Discussing only a subset of one’s opinions with a given neighbor. This is
implemented by setting the relevant restriction map to projection onto a
subspace spanned by a set of discussed topics.

• Generating opinions on specific policies from privately-held general princi-
ples. Here the discourse space over an edge is spanned by the policies under
consideration, while the vertex stalk is spanned by the space of principles.
The restriction maps of the sheaf implement the translation from principles
to policies.

• Modulating the intensity or even the direction of one’s opinions. Restriction
maps can scale or change the sign of opinions as they are translated to
the discourse space. This can allow individuals with opinions far from the
mainstream to appear to be in agreement with the rest of the network.

Once we have specified the discourse sheaf, we can begin to study the dynamics
of opinions living in this sheaf. The dynamical systems studied in Chapter 7 come
in handy here. We can of course begin with the sheaf diffusion dynamics ẋ = −LFx.
This will converge to an opinion distribution with agreement in every pairwise
discourse space. Diffusion dynamics are only the beginning. Suppose there is a
collection of stubborn individuals who refuse to change their opinions, while the
rest of the population proceeds according to the diffusion dynamics. This amounts
to the heat equation with boundary conditions discussed in Chapter 7.1.1. In
particular, the global opinion distribution converges to a harmonic extension of the
opinions of the stubborn individuals.

Most of the other dynamical systems discussed in Chapter 7 have a natural
interpretation in terms of discourse sheaves. The control system dynamics (7.1)
describe the manipulation of opinion distributions by feeding information to a
subset of individuals. Proposition 7.1.2 gives conditions under which it is possible
to steer the opinion distribution to any section of the discourse sheaf.

Dynamics on the sheaf structure can be interpreted as agents adapting their
strategies for communicating with their neighbors. Given an initial opinion distri-
bution, the restriction map dynamics (7.3) converge to a communication strategy
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that eliminates disagreement between neighbors. One might say that the agents
“learn to lie” about their true opinions in order to keep the peace. The combined
heat equation and restriction map dynamics (7.5) involve individuals adapting
both their opinions and the way they express them to their neighbors, leading
ultimately to a stable discourse sheaf/opinion distribution pair.

The threshold dynamics described in Section 7.3.1 are a continuous-time smoothed
version of bounded-confidence opinion dynamics. Rather than a sharp threshold
of disagreement over which neighbors ignore each other, opinion influence is
attenuated as disagreement increases, diminishing to zero above the threshold.
Proposition 7.3.1 implies that we can think of this as dynamics with a sheaf
structure that varies depending on the opinion distribution, and all equilibria are
consistent over edges whose disagreement is below the threshold. These equilibria
are Lyapunov stable by Proposition 7.3.2.

There are two ways to encode signed social relationships. One is the O(1)-
bundle approach discussed in Chapter 2.1. The edge between two friends has both
restriction maps the same sign, while the edge between two enemies has their
signs opposite.1 When the diffusion dynamics are applied to cochains on such a
sheaf, we see that enemies attempt to adjust their opinions until they have opposite
signs and the same magnitude. Alternately, we may use the signed Laplacian
from Chapter 7.3.2 given by a negated different edge potential function over edges
between enemies. Under these dynamics, enemies push their opinions to be as
far from agreement as possible. This means that for certain patterns of friendship
and foeship, the opinion dynamics are unstable, leading to unbounded opinion
distributions.

9.2 learning sheaf laplacians

To do network science, it is first necessary to have a network. In many situations, the
edges of a network are given explicitly: many physical networks, social networks,
and hypertext networks, for instance. However, in other settings, edges must be
reconstructed from lower-order data. This is particularly common in network
approaches to physical and natural systems, where, for example, it is difficult to
observe the entire collection of relationships between a set of genes or neurons or
species. In neuroscience, this sort of analysis is known as extracting the functional
connectivity from data associated to nodes.

Approaches to constructing functional networks from data are often quite sim-
ple. For instance, a very common method is to compute a correlation matrix
between different data sources and impute connections corresponding to entries
whose absolute value exceed some threshold. These correlation networks can be

1 Under the semantics we have been using, this would mean that one enemy lies about their opinion.
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made more sophisticated, with weights and factorization analyses, but they still
typically amount to extracting only connections without information about rela-
tionships [Hor11]. We want to do better, and learn a sheaf structure, not just a
network structure, from data.

To do this, we will adapt a framework from the field of graph signal process-
ing [Ort+18]. The central concept of this field is that we can treat data associated
with graphs in ways similar to those used for traditional signal processing. This
involves the construction of Fourier-like transforms using Laplacian and adjacency
eigenvectors, filtering and sampling theory, and learning from graph signals. In
particular, the interpretation of the graph Laplacian as giving a measure of the
smoothness of a signal is central. The Laplacian quadratic form E(x) = 〈x,Lx〉 is a
measure of the `2 variation of a signal over the edges of a graph. A smooth signal
has low variation; the smoothest signals are the constant functions.

In many situations, we expect data that comes from a process on a graph to be
smooth with respect to that graph’s Laplacian. This fact has been leveraged to build
frameworks for learning a graph from data [LT10; Don+15; Kal16; EPO17]. The idea
is this: construct an optimization problem over an appropriate space of Laplacian
(or Laplacian-like) matrices, where the cost function contains a term measuring the
smoothness of the observed data with respect to the proposed Laplacian. That is, if
we have a set of functions xk on the vertices of our graph, the cost function is

C(L) =
∑
i

〈xk,Lxk〉+ regularization terms.

The regularization terms typically include a term to control sparsity of L, as well
as a term that breaks the homogeneity of the cost function, so that L does not go to
zero and represents a connected graph. For instance, Kalofolias [Kal16] proposed
the cost function

C(L) =
∑
k

〈xk,Lxk〉−α
∑
i

log(Lii) +β
∑
i<j

∣∣Lij∣∣2 , (9.1)

while Egilmez et al. [EPO17] proposed functions of the form

C(L) =
∑
k

〈xk,Lxk〉− log detL+α
∑
i<j

∣∣Lij∣∣ . (9.2)

These cost functions are minimized over the cone of graph Laplacians, or perhaps
over some larger cone, such as the set of positive definite graph Laplacians with
some signs changed, or the cone of diagonally dominant matrices. Since these are
convex sets with simple descriptions, it is typically possible to formulate these prob-
lems in a way that allows efficient computation. For instance, the cost function (9.1)
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can be equivalently written in terms of the adjacency matrix with nonnegative
constraints and solved via a simple primal-dual algorithm. The cost function (9.2)
does not admit such a reformulation, but remains a convex optimization problem
that can be expressed as a semidefinite program.

This smoothness-based approached to learning a graph Laplacian generalizes
readily to learning a sheaf Laplacian. We need to construct appropriate cost func-
tions for sheaf Laplacians and optimize them over the relevant spaces of sheaf
Laplacians. For tractability and optimality guarantees, we focus on convex objective
functions. To begin, we assume that the dimension of stalks over vertices of the
graph are known, while the dimension of edge stalks is allowed to be arbitrary.
That is, we know how to partition our input signals xi into pieces that come from
each node. A generalization of (9.1) to sheaf Laplacians is

C(L) =
∑
k

〈xk,Lxk〉−α
∑
i

log trLii +β
∑
i<j

‖Lij‖2F. (9.3)

This is a sum of convex functions, and hence convex. The second term ensures that
the diagonal blocks of L do not go to zero, while the third term exerts some control
over the sparsity of the off-diagonal blocks of L—as β increases it encourages
weight to be distributed more evenly across these blocks.

Similarly, a generalization of (9.2) to sheaf Laplacians is

C(L) =
∑
k

〈xk,Lxk〉− log detL+β
∑
i<j

‖Lij‖1, (9.4)

where ‖Lij‖1 is the entrywise `1 norm of the matrix Lij, not the operator `1 norm.
The structure of various cones of sheaf Laplacians is described in Chapter 3.3.2.

This representation allows us to express our optimization problem in a format
suitable for implementation with standard convex solvers. For instance, if we wish
to optimize C(L) over the cone of all sheaf Laplacians with given vertex stalk
dimensions, we solve the problem

min
L
C(L)

s.t. L =
∑
e

Le

Le � 0
Le has the correct sparsity pattern

(9.5)
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To optimize over the cone of matrix-weighted graphs, we solve

min
L
C(L)

s.t. Lij = −Wij, i 6= j
Wij � 0∑
j

Lij = 0 ∀i

(9.6)

Finally, to optimize over the convex hull of the space of connection Laplacians, we
solve

min
L
C(L)

s.t. Lii = diI ∀i

di >
∑
i 6=j
‖Lij‖ ∀i

d =
∑
ij

wij1{i,j}

(9.7)

The cost function (9.3) can be written in terms of the edge contribution matrices
Le. First concatentate the vertex signals xk into a matrix X, and note that the
smoothness term is equal to tr(XTLX) = tr(LXXT ). Let M = XXT and construct
the matrices Me with the corresponding sparsity patterns to the matrices Le.
Then tr(LM) =

∑
e tr(LeMe). Similarly, the off-diagonal regularization term is

simply
∑
e‖offdiag(Le)‖2F. Only the term

∑
i log trLii requires us to combine the

individual matrices Le, becoming
∑
i log

(∑
iPe trLe[i, i]

)
. Thus, we have

Csheaf(L) =
∑
e

tr(LeMe) −α
∑
i

log

∑
iPe

trLe[i, i]

+β
∑
e

‖offdiag(Le)‖2F.

The cost function decomposes even more nicely for the matrix-weighted and
connection Laplacian cases:

CMW(L) =
∑
i 6=j

tr(Wij(Mii+Mjj−2Mij))−α
∑
i

log

∑
j

tr(Wij)

+β
∑
i>j

‖Wij‖2F

CCL(L) =
∑
i 6=j

tr(wij(Mii +Mjj) − 2LijMij) −α
∑
i

logdi +β
∑
i>j

‖Lij‖2F.
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These simplifications are more difficult to apply to the cost function (9.4), due to
the indecomposability of the term log detL.

9.2.1 Statistical interpretations

The cost function (9.2) has an alternate interpretation as a regularized version of a
likelihood function for the inverse covariance matrix of a multivariate Gaussian. To
see this, suppose that the signals xk are distributed with distribution function

p(x|L) =

√
detL
(2π)d

e−
1
2 〈x,Lx〉.

This implies that L is the inverse of the covariance matrix of the random variable x.
The log-likelihood is

logp(x|L) =
1

2
log detL− d log 2π−

1

2
〈x,Lx〉,

so the log-likelihood of a series of independent observations xk is

logp(x1, . . . , xn|L) =
∑
i

logp(xk|L) = −
1

2

[∑
k

〈xk,Lxk〉+n log detL+K

]
.

We normalize the log-likelihood, drop constant terms, formulate in terms of the
sample covariance matrix M = 1

nXX
T , and add a sparsity-enforcing `1 norm term

to get the convex functional

C(M|L) = tr(LM) − log detL+α
∑
i>j

∣∣Lij∣∣ .
Minimizing this objective subject to the constraint that L be positive semidefinite is
a problem known as the graphical lasso [BGd08; FHT08].

The sparsity structure of the inverse covariance matrix of a multivariate normal
random variable implies certain conditional independence properties of the entries
of the random vector. The sparsity pattern determines a graph G with vertices
corresponding to entries of x. If a set K of nodes forms a separating set—its
removal separates the remaining nodes of G into two components G1 and G2, we
can conclude that x|G1 and x|G2 are independent given x|K. This property makes
the collection of random variables X|i into a Gaussian Markov random field, or a
Gaussian graphical model [RH05]. This conditional independence structure is implied
by the factorization of the probability distribution function of x into a product of
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terms, each of which depends only on the two vertices incident to a given edge in
G. That is,

p(x) =

√
detL
(2π)d

∏
e

e−
1
2 〈x,Lex〉.

The approach to graph learning proposed by Egilmez et al. adds additional con-
straints to the graphical lasso, requiring that the inverse covariance matrix have the
form of a graph Laplacian. One motivation for this requirement is that it ensures
that the matrices Le in the factorization are positive semidefinite and hence them-
selves define Gaussian distributions. However, the edge contribution matrices Le
have this form precisely when L is a sheaf Laplacian. In the language of graphical
models, such a decomposition is said to define a pairwise normalizable Gaussian
Markov random field [MJW06].



10
L I N E A R S Y S T E M S

10.1 linear time-invariant systems

Traditionally, a discrete-time linear time-invariant control system is specified as a
set of linear equations specifying the time evolution of the state and outputs of the
system. That is, a linear time-invariant system is given in the form

x[t+ 1] = Ax[t] +Bu[t]

y[t] = Cx[t] +Du[t],
(10.1)

where x[t] is the state at time t, u[t] is the input at time t, and y[t] is the output at
time t. Admissible trajectories of the system are solutions of this set of equations,
and properties of the system are defined in terms of the linear algebraic properties
of the equations [Son98].

Cellular sheaves represent structured systems of linear equations, and we can
translate the recurrence relation (10.1) into a sheaf over an infinite graph, demon-
strated in Figure 10.1. There are three vertices for each time step: one for the input,
one for the output, and one to hold the current state and input of the system.
Sections of the sheaf correspond to solutions of (10.1), and hence to admissible
trajectories of the dynamical system. One can compute the output behavior of
the system for a given sequence of inputs by extending a partial section on the
input vertices to a complete section; the structure of the restriction maps of the
sheaf guarantees that such an extension exists. Conversely, one may try to find
controls that produce a given output trajectory by solving the same problem, but
such an extension may not exist—its existence depends on the controllability of the
underlying system. We call this sheaf the evolution sheaf of the control system, and
denote it E, with its underlying graph E.

At every central vertex, the evolution sheaf has the same algebraic structure,
due to the time-invariance of the dynamical system. This allows us to express the
data of the dynamical system in a much more compact sheaf form. This is the
template sheaf of the dynamical system, illustrated in Figure 10.2. We denote it T,
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Xt ⊕Ut

Ut

Yt

Ut

Yt

πU

id

[C D]

id

Ut-1 Ut+1

Yt-1

Yt-1

id

Yt+1

Yt+1

id

Xt-1 ⊕Ut-1 Xt+1 ⊕Ut+1

πX[A B] Xt

[C D] [C D]

πX[A B] Xt+1

Ut-1

πU

id

Ut+1

πU

id

Figure 10.1: The evolution sheaf of a discrete time LTI system.

and its underlying graph T .1 Note that there is a cell complex morphism p : E→ T ,
sending all central vertices to the vertex of the loop, all vertices labeled Ut to the
vertex labeled U, and all vertices labeled Yt to the vertex labeled Y. The edges
between central vertices are mapped to the loop, with the orientation such that
incrementing t corresponds to a clockwise path along the loop. We then note that
the evolution sheaf is the pullback of the template sheaf, i. e., E = p∗T.

Since sections of T pull back to sections of E that are constant on fibers of p,
sections of T correspond to equilibria of the system. These are not only fixed points
in the zero-input regime, but include equilibria of the system with constant nonzero
inputs as well.

A reasonable question at this point is when a sheaf over T describes a dynamical
system, that is, when does it have the structure of a template sheaf? To recover
maps A,B,C,D yielding the standard state-space description of the system, the
maps labeled by πX and πU must be the structure maps of a product decomposition
of the stalk over the central vertex. This, combined with the requirement that the
restriction maps from the stalks at the input and output terminals be isomorphisms,
ensures that the template sheaf lifts to the evolution sheaf of an LTI system. Given
the direct sum decomposition of the stalk at the center, we identify the subspaces
X and U, which then determines the four maps A,B,C, and D.

1 This graph is not technically a regular cell complex, since there is a self-loop. We can ameliorate
this difficulty by adding an extra vertex, or simply resign ourselves to working slightly outside the
formal regularity of the category of regular cell complexes as mentioned in passing in Chapter 1.1.
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X⊕U

U

Y

U

Y

X

πX

πU

id

Cx+Du

id

Ax+ Bu

Figure 10.2: The template sheaf of a discrete time LTI system.

What happens if we do not require such a decomposition? We can still view
sections of p∗T as admissible trajectories of an open dynamical system, but this
system may not behave in the ways we are accustomed to. For instance, if πX is not
surjective, the system will not be deterministic: multiple trajectories may follow
from a given initial state. If the kernels of πX and πU do not span their domain, it
will not always be possible to change the control input independently of the state,
or causality may be violated. In short, sheaves over T represent generalized open
discrete-time dynamical systems.

10.2 behavioral control theory

These sorts of generalized systems are described in the language of behavioral
control theory, introduced and championed by Jan Willems [Wil86; Wil07]. Rather
than instantiating a control system as a set of differential or difference equations,
behavioral control theory conceptualizes it as a relation between possible input
and output signals. Indeed, in this formulation, inputs and outputs are formally
interchangeable: to be more general, systems simply impose constraints on the
values at their boundaries. This is a representation nearer to our understanding of
natural laws. After all, the equations of physics do not have inputs or outputs.

To be precise, a discrete-time behavioral control system is a pair (W,B), where
W is a state space and B, the behavior, is a subset of WZ consisting of admissible
trajectories of the system. Such a system is linear if W is a vector space and B is a
subspace ofWZ. It is time invariant if TkB ⊆ B for all k, where Tk :WZ →WZ is the
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length-k shift. To relate this to the setting of sheaves over T , we have W = C0(T ;T),
and B = H0(E;p∗T) ⊆ C0(E;p∗T) = WZ. The system so defined is linear and
time-invariant. Inputs and outputs are considered via subspaces of the state space,
or more generally, by variable sharing: constraining a function on the state space to
hold a particular sequence of values over time.

Willems proposed a compositional approach to systems analysis, discussing
operations he called tearing (separating a subsystem from a larger system), zooming
(investigating the internal properties of a black-box system), and linking (connecting
systems together by variable sharing). This approach has attracted recent interest
from the field of applied category theory, which has formulated graphical languages
for linear systems that mirror the signal flow diagrams used by engineers [BE15;
Erb16]. Signal flow diagrams are instantiated as string diagrams in a monoidal
category generated by the symbols used in these diagrams. The relations imposed
on the generators offer a syntax that allows manipulation of diagrams while
preserving equivalence of systems, composition of diagrams corresponds to gluing
systems via variable sharing, and a functor to an appropriate category of behaviors
implements a semantics for these diagrams. Work within this model has been
able to prove some nontrivial results about controllability of systems expressed by
signal flow diagrams [FSR16].

We can similarly instantiate signal flow diagrams as cellular sheaves on graphs. A
signal flow diagram can be seen as a decorated graph: certain edges or vertices have
symbols that represent operations on signals. These operations enforce constraints
on the signals associated with edges or vertices. For discrete-time linear time
invariant systems, a few operations suffice to generate all possible systems. These
are shown in Figure 10.3. Each block is represented by a sheaf on a small graph.
The outer vertices of this sheaf have stalks RZ, representing possible discrete-time
signals as measured at that vertex. The sheaf structure serves to impose certain
relations between signals at these ports. The scalar multiplication block, for instance,
imposes the constraint that ax[t] = y[t] for all t. The time shift block imposes the
constraint x[t− 1] = y[t] for all t.

One composes these blocks by gluing the underlying graphs together. This
amounts to a colimit in the category of sheaves on all graphs. In this category, the
objects are pairs (G,F) where G is a graph and F a sheaf on G, and morphisms
(G,F)→ (H,G) are given by a cellular morphism f : G→ H and a sheaf morphism
F → f∗G. There is a forgetful functor from this category to the category of 1-
dimensional regular cell complexes, and there is a free functor which is both left
and right adjoint to the forgetful functor, given by assigning the zero sheaf to each
graph. As a result, colimits in Shv have underlying graphs given by the colimit
in the category of cell complexes. To build signal flow diagrams, we really only
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Figure 10.3: Sheaf models for the building blocks of flow diagrams for linear time-invariant
systems
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Figure 10.4: Gluing flow diagram blocks using colimits in Shv

need to consider diagrams in Shv of the form shown in Figure 10.4, for which the
colimit is readily computed.

Once we have constructed our system as a pair of a graph G and a signal
flow sheaf S, we can compute its behavior by considering the space of global
sections H0(G; S) ⊆ C0(G; S). This again gives a linear time-invariant system in the
behavioral sense. However, the state space here is perhaps too large: it includes
information at many internal nodes whose state is possibly unimportant to us.
We would prefer to view our admissible trajectories as a subspace of a smaller
space of observables. To do this, we choose a subset A of vertices of G on which
the observable functions live, and take the sheaf i∗S on A, where i : A→ G is the
inclusion map. There is an induced map i∗ : H0(G; S)→ H0(A; i∗S) = C0(A; i∗S).
We let our behavior space be the image of this map within the signal space
C0(A; i∗S).

We may also wish to construct a simplified graphical description of the system.
This can be accomplished by a morphism p : G→ H which collapses parts of the
diagram together. The pushforward p∗S has the same space of global sections and
hence the same behavior as the original signal flow sheaf. We may think of the
graph H as representing a spatial distribution of the original system—each node
represents some localized piece of the system, which is connected to others via
edges.

Another way to construct a signal flow-type sheaf describing a linear system is
to take a collection of linear systems Σi described in the format (10.1). That is, Σi is
the system

xi[t+ 1] = Aixi[t] +Biui[t]

yi[t] = Cixi[t] +Diui[t]
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We connect these systems by attaching outputs to inputs. Suppose the state space
of Σi is Xi, the input space is Ui, and the output space is Yi. We take a direct sum
decomposition of each Ui =

⊕
jU
j
i ⊕U

0
i and Yi =

⊕
j Y
j
i ⊕ Y

0
i . The coupling is

accomplished via linear maps T ji : Y
j
i → Uij.

This collection of coupled linear systems becomes a cellular sheaf on the graph
G with vertices corresponding to systems and edges between two systems when
there is a nontrivial coupling (i. e., either T ji or T ij is nonzero). The stalks are
S(i) = (Xi ⊕Ui)Z and S(i ∼ j) = Uji ⊕U

i
j. The restriction map SiP i∼j is idUi ⊕T

j
i .

Finally, we add an additional edge ei incident to each vertex to enforce the time
evolution constraints for that system. The vertex at the opposite end will have
a zero-dimensional stalk, and S(ei) = XZ

i . The restriction map SiPei is given by
SiPei(x[t],u[t])t∈Z = (x[t] −Aix[t− 1] −Biu[t− 1])t∈Z. One can readily check that
the sections of S are precisely the admissible trajectories of the coupled system.

Another way to obtain a similar sheaf is to represent each linear system as a sheaf
Ti over the graph T in Figure 10.2. The sheaf p∗p∗T has a space of sections equal
to the space of admissible trajectories of the linear system Σi. The “whiskers” of
each copy of T can then be glued together in a way respecting the interconnections
between systems. (More such whiskers can be added if necessary to allow for finer
partitions of the input space.)

10.2.1 Laplacians

At this point it is natural to ask what properties the Laplacians of these sheaves
associated with linear systems have. We note first that the evolution sheaf E has
an infinite underlying graph, and the signal flow sheaf S has infinite-dimensional
stalks, so we should expect some difficulties. We will need to restrict to signals in
`2—those which decay sufficiently rapidly at infinity. Thus, the sections of E are
those trajectories of the system with finite total energy, and we will have to replace
the stalks RZ of S with `2(Z), at which point its sections will again be trajectories
with finite total energy.

For use in applications, it will typically be necessary to truncate our spaces to a
finite time horizon. Thus the graph E becomes finite and the stalks of S become
finite-dimensional. If we are given a signal flow sheaf in the form of coupled linear
systems in standard form (10.1), truncated to times t with 0 6 t 6 T , the space of
0-cochains can be written

C0(G; S) =
⊕
i

(Xi ⊕Ui)T+1,
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so we can identify a 0-cochain by its entries (x,u)i[t]. The Laplacian of S is then
given by

(LS(x,u))xi [t] =
∑
i∼j

CTi (T
j
i)
T (T jiCixi[t] + T

j
iDiui[t] − uj[t])

−Aixi[t− 1] −Biui[t− 1] + (I+ATi Ai)xi[t]

+ATi Biui[t] −A
T
i xi[t+ 1]

(LS(x,u))ui [t] =
∑
i∼j

DTi (T
j
i)
T (T jiCixi[t] + T

j
iDiui[t] − uj[t])

+
∑
i∼j

(ui[t] − T
i
jCjxj[t] − T

i
jDjuj[t])

+BTi Aixi[t] +B
T
i Biui[t] −B

T
i xi[t+ 1],

where T ji is the extension of the map T ji : Y
j
i → Uij to T ji : Yi → Uj by zero, and all

variables with t < 0 or t > T are zero. This Laplacian is useful in the distributed
model predictive control formulation described in Chapter 11.1.2.
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D I S T R I B U T E D O P T I M I Z AT I O N

11.1 homological constraints for optimization

Consider a collection of autonomous computing agents connected in a network
described by a graph G. Each agent i has access to a convex function fi : Rn → R.
We wish to design a method by which the agents may cooperate to find the
minimum of the function f : Rn → R given by f(x) =

∑
i fi(x), without centralized

coordination.
To do this, we reformulate the problem in terms of local variables. Rather than

the global problem

min
x∈Rn

∑
i

fi(x),

we use the equivalent problem

min
xi∈Rn

∑
i

fi(xi)

s.t. xi = xj for all i ∼ j.
(11.1)

We can think of these distributed variables as representing a cochain x ∈ C0(G; Rn).
The equality constraints then amount to the requirement that x ∈ H0(G; Rn).

This reformulation turns the problem into a naturally decentralized problem.
Distributed optimization algorithms have been studied extensively, and typically
involve a combination of a local optimization algorithm acting on each fi—like
gradient descent—and a neighborhood-based consensus process—like graph diffu-
sion. When appropriately combined, the first process moves toward a minimizer
for the problem, while the second process ensures that the homological constraint
is satisfied.

While the initial motivation comes from a constraint x ∈ H0(G; Rn), we may
just as easily use any other sheaf on G. We call this type of problem homological
programming, by analogy with the terminology for other sorts of optimization
problems. This naturally extends to optimization problems defined on higher-
degree cochains. Given an objective f(x) =

∑
dimσ=d fσ(xσ), we can optimize
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subject to the constraint x ∈ Hd(X;F) or x ∈ Zk(X;F), or even x ⊥ Bk(X;F). These
constraints can be enforced by the Hodge, up-, or down-Laplacians, respectively.

The framework of homological programming subsumes that of distributed
optimization with a single state space by using the constant sheaf, but it also
includes distributed formulations of other natural problems. It should be noted
that the question of algorithms for optimization problems with distributed linear
constraints has been considered previously, in [Nas+17; Hua+17]. These papers
considered distributed learning problems where local learned parameters were
required to satisfy certain linear constraints between sets of nodes.

Here are a couple of sketches to illustrate potential uses of sheaf homological
programs.

11.1.1 Signal recovery

Consider a set A of sensors observing a function D→ V defined on some domain
D. Each sensor a ∈ A observes f restricted to some subset Ua of D, and assume
that the sets Ua cover D. The nerve of this cover is a simplicial complex N(A) with
vertices corresponding to sensors. This nerve carries a natural cellular sheaf F. The
stalk over a cell σ corresponding to an intersection of sets

⋂
AUa is simply the

set of functions
⋂
IUi → V. Restriction maps are simply restriction of functions.

Global sections of F are precisely functions D→ V.
We now assume that the sensors have the ability to communicate with their

neighbors in the 1-skeleton of the nerve. Assume each sensor a can observe
xa = Paf|Ua +εa, where Pa is a linear function representing some sensing modality,
and εa is an error term. (The sensing map Pa might simply be the identity, or it
might be something more complicated like a sampling or a band-limited Fourier
transform.) The problem of recovering f from these measurements can be cast as a
regularized optimization problem:

min
f

∑
a

‖Paf|Ua − xa‖
2 +αR(f)

where R(f) is some regularization term controlling properties of the recovered
solution. If we assume R(f) is local, consisting of a sum of terms Ra(f|Ua), we can
write an equivalent homological program

min
y∈C0(N(A);F)

∑
a

‖Paya − xa‖2 +αRa(ya)

s.t. y ∈ H0(N(A);F)
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For a more concrete instantiation of this problem, consider the case where A and
D are the set of vertices of a graph G, and Ua for a vertex a is the set of neighbors
of a. That is, sensors are located at the vertices of a graph, and can observe (with
noise) the values of f at all vertices in their immediate neighborhood. We take
Pa = id, and assume that the observed function is smooth, so that our regularization
term is R(f) = 〈f,LGf〉 =

∑
v∈V(G)

1
2

∑
u∼v(f(v) − f(u))

2 =
∑
v Rv(f|Uv). Then the

distributed optimization problem is

min
y∈C0(G;F)

∑
v

‖yv − xv‖2 +
α

2

∑
u∼v

(yv(v) − yv(u))
2

s.t. y ∈ H0(G;F)

11.1.2 Model predictive control

Optimal control theory considers the problem of controlling a dynamical system
to a particular state at a minimal cost. For a linear system with no constraints on
inputs, these problems can be solved explicitly. Feedback controllers can also be
designed to stabilize the system around a particular operating point. However,
when the system model is subject to inaccuracies or has high-order behavior, these
methods may not suffice to control the system. In these situations, a more robust
approach known as model predictive control is often used.

In model predictive control, the input at each time step is selected based on
a finite-horizon optimization problem based on information at the current time.
That is, given the observed state of the system at time t, compute inputs for times
t+ 1, . . . , t+ T that minimize an objective function designed to steer the output
to a desired state over this time horizon. Formally, one considers an optimization
problem like

min
u

T∑
t=1

Cx(x[t]) +Cu(u)

with the implicit constraint that the state variables x[t] depend on the input
variables u[t] according to the linear model for the system. At each time step
only the first input from the calculated plan is applied to the system, and then the
optimization problem is solved again at the next step with the new measurements.

Given a collection of coupled systems with local controllers that can communicate,
we might want a distributed method of solving the model predictive control
problem. This requires a distributed way of computing the model relationship
between inputs and states. The signal flow sheaf of Chapter 10.2 offers just such a
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method of computation. Under the assumption that the cost functions Cx and Cu
decompose with respect to local states and inputs, the MPC problem becomes a
homological program:

min
(x,u)∈C0(G;S)

∑
i

(
T∑
t=1

Cix(xi[t]) +C
i
u(ui)

)
s.t. (x,u) ∈ H0(G; S)

x[0] = x0.

(11.2)

There is an extra linear constraint here, which can be treated in various ways
depending on the distributed algorithm we use. Perhaps the simplest is to fix x[0]
in the dynamics and use the harmonic extension Laplacian dynamics.

11.2 distributed algorithms for homological programming

The sheaf Laplacian implements the constraints for homological programs in the
same way that the graph Laplacian implements the local constancy constraint.
This allows us to adapt algorithms for distributed optimization to homological
programming. One such approach, proposed by Wang and Elia [WE10; WE11],
constructs a distributed dynamical system that converges to the optimizer of the
problem. Given a problem of the form

min
xi∈Rn

∑
i

fi(xi)

s.t. Lx = 0
(11.3)

construct an augmented Lagrangian

L(x, z) =
∑
i

fi(xi) + 〈x,Lx〉+ 〈z,Lx〉.

This function is convex in x and linear in z; saddle points of the function are primal-
dual optimal pairs for the optimization problem. The saddle-point dynamics

ẋ = −∇xL(x, z) = −
∑
i

∇fi(xi) − 2Lx− Lz

ż = ∇zL(x, z) = Lx

are gradient descent in the primal variable and gradient ascent in the dual variable.
These dynamics are local, since the derivative of xi depends only on ∇fi, (Lx)i and
(Lz)i. A result about saddle-point dynamics due to Cherukuri, Gharesifard, and
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Cortés allows us to show that this system indeed converges globally to optimal
primal-dual pairs.

Theorem 11.2.1 (Corollary 4.5, [CGC17]). Let L : Rn×Rm → R be once differentiable,
with the function L(·, z) convex for all z and the function L(x, ·) linear. Further suppose
that for each saddle point (x∗, z∗) of L, if L(x, z∗) = L(x∗, z∗) then (x, z∗) is a saddle
point of L. Then the set of saddle points of L is globally asymptotically stable under the
saddle-point dynamics, with trajectories converging to a point.

The saddle points of L are precisely the optimal primal-dual pairs for the
augmented problem. Since the objective function is convex, the conditions for this
theorem hold.

Of course, there is no formal difference between the system 11.3 and the system

min
x∈C0(G;F)

∑
v

fv(xv)

s.t. LFx = 0,
(11.4)

so this method immediately generalizes to give a distributed algorithm for homo-
logical programming. All one has to do is replace the graph Laplacian with the
sheaf Laplacian in the augmented Lagrangian.
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