
THE DISTRIBUTION OF CURRENT IN A NETWORK OF CONDUCTORS
(INTRODUCTION TO COMBINATORIAL TOPOLOGY)

HERMANN WEYL

The study of the continuum, Analysis situs1, has a purely combinatorial portion which
now, thanks to the fundamental work of H. Poincaré2, can be studied independently and
admits a complete, systematic exposition. I gave a series of lectures on this topic in 1918
at the Superior Technical School of Zurich. Since then, other works on the topic have
been published, one in the same vein by O. Veblen3, and another limited to the two-
dimensional case by Chuard4. The (one-dimensional) problem of the distribution of cur-
rent in an arbitrary network of conductors is quite appropriate as an introduction to the
topic, since it highlights the fundamental concepts which then can be extended to the
higher-dimensional case.

We will suppose that the electrical network is composed of a finite number of homoge-
neous wires which meet in a finite number of nodes. The related geometric construction
will be called a complex of segments, the nodes will be the vertices of the complex, and the
wires will be the edges of the complex.5

More rigorously: A complex consists of a finite number of “vertices” or elements of dimension
0 and a number of “edges” or elements of dimension one. Each edge is bounded by two of these
vertices and this boundary data completely describes the structure of the complex.

Instead of saying “the vertex a bounds the edge σ,” we will also say “σ ends at a” or “σ
and a are incident elements of the complex.” It is not necessary that three or more edges
terminate in a given vertex a; it is possible that only two or even only one edge ends at a;
it may also happen that a is an isolated vertex that does not bound any edge.

Date: 1923, published in Revista Matematica Hispano-Americana.
1Just around the time this paper was published, the term “topology” was replacing the now quaint term

“analysis situs.”
2Poincaré’s seminal paper Analysis situs was published in 1895, and followed by a sequence of five

supplements.
3Oswald Veblen gave a set of lectures in the Cambridge Colloquium, which were published in 1916.
4Jules Chuard, “Questions d’analysis situs,” Rendiconti del Circolo Matematico di Palermo 46 (1922).
5I have translated the terms “punto” and “segmento” as “vertex” and “edge,” respectively, since these

sound more natural from the modern point of view. We expect a line segment to have an infinite number of
points, after all.
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We will also allow the complex to have no edges at all, that is, that it may be formed
entirely of vertices, but we will exclude the “empty set” which contains neither vertices
nor edges. In diagrams of complexes, which are used in combinatorial analysis situs (re-
gardless of the actual nature of the elements forming the complex), elements must be
distinguished from each other by some symbol, for example, in the complex formed from
the edges and vertices of a tetrahedron (a Wheatstone bridge configuration) there are four
vertices 0, 1, 2, 3, and six edges α, β, γ, α′, β′, γ′, and the arrangement is

α

{
0
1

, β

{
0
2

, γ

{
0
3

α′
{

2
3

, β′
{

3
1

, γ′
{

1
2

where, for instance, α

{
0
1

should be read “α is bounded by 0 and 1.”

A complex C may either be connected or consist of several pieces which are not con-
nected to each other. A subset C′ of the elements of C is called isolated when there is
no pair of incident elements in C where one is in C′ and the other is not. A complex is
connected when its elements cannot be partitioned into two isolated subsets C′ and C′′.

The edge σ bounded by two vertices a and b may be traversed in the two different
directions from a to b or from b to a. A chain is a succession of directed edges, in which
the endpoint of one edge is the initial point of the following edge. If we take the vertices
through which the chain passes as well, we can define the chain in terms of an alternating
series of elements of the complex: “vertex, edge, vertex, edge, . . . , vertex,” in which every
edge is neighbored by the two vertices in its boundary. A chain joins the first vertex of
this sequence with the last, and it is closed if the first and the last vertex are the same;
in this case the sequence is no longer considered as a linear order, but rather ordered
cyclically, and the traversal can be considered as starting at any vertex. In general we do
not assume that all elements of the sequence defining a chain are distinct; the chain may
pass multiple times through the same vertex or edge. If all the elements of the series of
elements are distinct, the corresponding chain is called simple, and a simple closed chain
is called a cycle or circuit.

Every complex can be decomposed in precisely one way into a set of isolated, connected
subcomplexes. Any such complex can be obtained as follows: a vertex 0 is selected, to
which are added all edges leaving 0, followed by all vertices except 0 which are in the
boundary of these edges, after which are added the edges which leave these vertices and
have not yet been considered, and so on until no new elements are obtained. Thus we
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obtain the collection C(0), corresponding to the element 0, which is obviously connected
and isolated. It contains all vertices that can be joined to 0 by a chain (and only those
vertices), and the construction proves that, if a chain goes from 0 to a, the points 0 and a
can be joined by a simple chain. Not only may any point a of C(0) be connected to a, but
any two points a and a′ of C(0) may be connected, for which it is sufficient to connect a
with 0 and 0 with a′.

As a result, if 1 is a point not contained in C(0), the elements of the collection C(1) are
all distinct from the elements of C(0). From this the theorem on the decomposition of
a complex into connected, isolated subcomplexes results, and furthermore the following
theorem has been demonstrated: In a connected complex any two points may be linked by a
simple chain.6

It is well known that a stationary current cannot flow in a network of conductors if it
does not contain a circuit, or a simple closed chain; but if there is one, an electromotive
force applied to in the circuit suffices to produce a current. Thus, cycles play a decisive
role in understanding the distribution of current. A connected complex with no cycles is
called a tree.

If the collection C(0) is constructed as previously described beginning at some point 07,
in general several branches leave from any given vertex, but these never join together at
a common endpoint. Each branch therefore gives a new vertex at its end; if we omit the
root vertex 0 there are as many vertices as edges. That is, the number of vertices in a tree is
one greater than the number of its edges.

A tree can also be characterized (among connected complexes) by the property that
it breaks into separate parts when any segment is removed. If we remove a segment σ
with endpoints a, b from a complex C, and the resulting complex C′ is still connected, it
is possible to join a and b with a simple chain in C′, which together with σ forms a simple
closed chain in C. Conversely, if C contains a cycle, C does not split in two when one edge

6It seems this argument doesn’t quite prove that a simple chain suffices: if C is a tree and a, a′ are on the
same branch of the tree leaving from 0, the chain constructed is not simple. Weyl’s theorem is still true as
stated, but more justification is needed.

7For the next while, Weyl assumes that the complex C is a tree.
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in the cycle is removed. From this we obtain a new proof of the theorem on the number
of vertices and edges in a tree. Let N0 be the number of vertices, N1 the number of edges,
and t the number of connected, isolated components of the complex. If the complex C has
no cycles, the t parts of the complex are trees; on removing a segment the tree to which
it belongs splits into two. Under this operation, which transforms the complex C into C′,
N1 decreases by 1 and t increases by 1, and thus the number N1 + t is unchanged. C′ is
also a complex with no cycles. Now, removing the edges one by one until none remain,
we reach a set C0 consisting only of vertices, and therefore we have

N0
1 = 0 N0

0 = N0 t0 = N0

As in every step N1 + t is invariant, we have

N1 + t = N0
1 + t0 = N0.

If the original complex was a tree, we have t = 1, and therefore

N0 = N1 + 1.

In order to approach the problem of the distribution of current we will suppose that
each edge σ is provided with a direction of traversal. A current of intensity Iσ flows
through each edge σ; this quantity is positive when the current flows in the positive di-
rection, and negative otherwise. The edge σ conducts into a vertex a the quantity εaσ Iσ

of current per unit of time, where εaσ = +1 if a is the far end of σ when traversed in the
positive direction, = −1 if it is at the near end, and = 0 if it is neither8. Kirchhoff’s law,
which states that the same amount of current leaves a as enters it, is as follows:

(1) ∑
σ

εaσ Iσ = 0

There are thus N0 homogeneous linear equations in the N1 unknowns Iσ. The matrix
E = |εaσ| of their coefficients was first introduced by Poincaré in his paper “Analysis
situs.”

For the connections in the Wheatstone bridge, it is the following:

α β γ α′ β′ γ′

0 −1 −1 −1 0 0 0
1 +1 0 0 0 +1 −1
2 0 +1 0 −1 0 +1
3 0 0 +1 +1 −1 0

8That is, if a is not incident to σ.
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What can be said about the linear independence of the equations (1)? Suppose that
there is a linear identity with coefficients λa between the linear forms with the variables
Iσ; that is, suppose

∑
a

λaεaσ = 0

for every edge σ. These equations say that for the vertices a and b that bound an edge σ
we have λa = λb, and from this we deduce as well that λa = λb when a and b are two
vertices that can be linked by a chain. If the complex is connected, the λa are all equal;
therefore there is only one linear relation (with coefficients λa = 1) between the terms
of (1), or in other words, the number of linearly independent equations is N0 − 1. If the
complex is a tree, this number is the same as N1, the number of unknowns, and according
to the theory of linear equations the only solution is Iσ = 0. This establishes the theorem:
“A tree does not admit a stationary current.”

If the electromotive forces are known, Ohm’s law, which must hold for every closed
chain in the network, will give us further linear equations to determine the current inten-
sities. To determine the number of independent equations given by Ohm’s law, we need
to find the number of “independent” cycles in the network. This should be understood as
follows: If, for example, a chain traverses an edge σ three times in the positive direction
and five in the negative direction, we say that it traverses the edge a total of 3− 5 = −2
times. A chain associates to every edge σ an integer iσ, its indicator, which counts how
many times it is traversed in total by said chain. A chain is considered to be zero if all
its indicators iσ are zero; two chains are considered to be equivalent if their indicators iσ

are the same. This way of looking at things is suited to our purpose, since for a chain
equivalent to zero Ohm’s law gives the trivial formula 0 = 0.

Two chains i1, i2 can be added together. If a is any vertex of the first chain and b any
vertex in the second chain, it is sufficient to insert a connecting chain between a and b (re-
quiring the complex in question to be connected). We first traverse i1, next the connecting
chain from a to b, then i2, and finally return by the same chain from b to a; the closed chain
thus obtained is the sum i1 + i2. The choice of the points a and b and of the connecting
chain has no influence on the sum; with respect to the equivalence of chains it is uniquely
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determined. If iσ
1 are the indicators corresponding to the edges in i1 and iσ

2 those of i2, then
iσ
1 + iσ

2 are the indicators of i = i1 + i2. A chain represented by the numbers iσ is closed
when, and only when, for each vertex as many edges of the chain enter as leave; that is, if
for each vertex a the equation

(2) ∑
σ

εaσiσ = 0

holds.
The integer solutions of the equations (1) give us the closed chains in the network. The

problem of the independence of closed chains is the same as the problem of the linearly
independent solutions of these equations.

We now make a conceptual advance by defining a tree not as a connected complex
with no closed simple chains, but as a complex in which every closed chain is equivalent
to zero. To prove the equivalence of these definitions, it is necessary to show that: If a
complex has no cycles, every closed chain is equivalent to zero. This may be deduced
from the theory of linear equations; we have already seen that the equations (2) have the
unique solution iσ = 0 when the complex is a tree in the original sense. The same result
may be obtained by a simple construction. The vertices and edges of a closed chain i form
a cyclic sequence. If there are no simple closed chains, some element must appear multiple
times in the sequence i. If when traversing it beginning at some vertex the first element
encountered twice were a vertex a, the part of the chain from a to a would be a simple
cycle. Thus this element must be an edge σ, and i contains the sequence . . . a σ b σ a . . .
(the chain reverses at vertex b); since if there were other elements than b before σ was
repeated

. . . a σ b . . . a′ σ b′ . . .

then a′ would have to coincide with a or b and the element a′ would be repeated before
σ. Therefore we can remove from the sequence the portion σ b σ a and the given closed
chain is reduced to an equivalent chain whose sequence of vertices and edges has been
shortened by four elements. This operation may be repeated until the closed chain has
been reduced to zero.

If we disassemble the complex by removing its edges one by one, in each step the
number N1 decreases by 1 and t increases by 0 or 1. If zero appears g times, the number
N1 + t is decreased by 1 g times and remains the same N1 − g times; therefore

(N1 + t)− g = N0.

For a connected complex we have, in particular,

(3) g = N1 − N0 + 1.

For a connected complex the number g defined by (3) is always ≥ 0, and and in what-
ever way the complex might be disassembled it always happens the same number of
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times that when an edge is removed there is no new component. In particular, the op-
eration may be conducted in such a way that after the first g steps the complex remains
connected and, therefore, after removing the first g edges it is reduced to a tree. As long
as g 6= 0 the complex has not yet been converted into a tree and it is still possible to re-
move another edge without disconnecting it. For closed chains we obtain the following
theorem: “There are g simple closed chains i1, i2, . . . , ig such that every closed chain is equivalent
to one, and only one, linear combination

m1i1 + m2i2 + · · ·+ mgig (m1, . . . , mg integers)

of these chains.”
Proof: Let g > 0. Then in the given connected complex C there exists a simple closed

chain i1. Let σ1 = ab be an edge belonging to i1; when σ1 is removed, C becomes a
connected complex C′ whose corresponding number is g′ = g− 1. a and b are linked in
C′ by a simple chain i′1 which is obtained from i1 by removing σ1. Any closed chain v in
C passes a total of m1 times through σ1. We convert v into a chain v′ of C′ by, every time v
passes through the edge σ1 that connects a and b, replacing it with the path −i′1

9 It is thus
obvious that

v = m1i1 + v′ (= representing equivalence).

If g− 1 > 0 as well, it is possible to find a simple closed chain i2 in C′ and convert C′
into a connected complex C′′ by removing an edge σ2 from i2; thus we have

v = m1i1 + m2i2 + v′′,
where v′′ is contained in C′′. Proceeding in this fashion, we easily obtain g simple closed
chains i1, . . . , ig and a connected complex C(g) such that every closed chain v in C may be
represented in the form

v = (m1i1 + m2i2 + · · ·+ mgig) + v(g)

where v(g) is contained in C(g). But C(g) is a tree, and so v(g) is equivalent to zero.
The theory of linear equations shows that the equations (1) and (2) with integer coeffi-

cients have

g = N1 − N0 + 1

independent integer solutions

i1 = (iσ
1 ) i2 = (iσ

2 ) . . . ig = (iσ
g)

which linearly combine to form every solution, since N1 is the number of unknowns and
N0− 1 the number of independent equations. The theory of arithmetic completes this the-
orem thus (for any homogeneous system of linear equations with integer coefficients): the

9The negative sign comes from the implicit orientation that this path receives from i.
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basic integer solutions i1, . . . , ig may be chosen in such a way that every integer solution i
is a linear combination of these in the form

i = m1i1 + m2i2 + · · ·+ mgig

where the coefficients m are integers.
In our case, this means that every closed chain may be constructed from g indepen-

dent chains (i1 . . . ig). We have here constructed one such basis for these closed chains;
our result has as an advantage over the result obtained from the general theory of linear
equations the fact that the basis so constructed consists of simple closed chains. When
we consider a greater number of dimensions it would be very difficult to follow these
constructions and, therefore, we will prefer to base our results on the theory of linear
equations. With the introduction of the matrix E = ‖εaσ‖ the most complicated combina-
torial problems become problems accessible to Mathematics through the simple and well
developed formalism of Algebra.

If Eσ is the electromotive force introduced across the edge σ, with rσ the resistance of
this wire, Ohm’s law10 applied to the circuit ih gives

(4) ∑
σ

iσ
h rσ Iσ = ∑

σ

iσ
h Eσ (h = 1, 2, . . . , g)

If we can show that the N0 − 1 independent equations in the homogeneous system (1),
together with the g inhomogeneous equations (4), form a system of N0 − 1 + g = N1
independent equations, it will follow that these uniquely determine the N1 unknowns
Iσ. And this may be deduced from the fact that this problem is none other than orthogonal
projection onto an N1-dimensional space.

A system of numbers I = (Iσ) associated with the edges σ of our network of conductors
will be denoted by the name vector. In particular, the sought for current distribution is
such a vector. The scalar product of two vectors I = (Iσ) and I = (Iσ

) is the bilinear form

(II) = ∑
σ

rσ Iσ Iσ.

When (II) vanishes, we say that the vectors I and I are perpendicular. The correspond-
ing quadratic form

(II) = ∑
σ

rσ(Iσ)2

is positive definite and represents the Joule effect per unit of time11 generated by the cur-
rent distribution (Iσ). The equations (1) define a g-dimensional variety of vectors12 Γ in
N1-dimensional space, for which the g independent vectors

i1 = (iσ
1 ), i2 = (iσ

2 ), . . . , ig = (iσ
g)

10In modern terms, we would probably say that this results from applying Ohm’s law individually to each
wire in the closed cycle ih.

11We would today just call this the power dissipated in the circuit; the Joule effect more specifically refers
to the heat generated by this dissipation.

12This is a subspace in modern terminology.
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form a basis.
The current distribution vector I belongs to this variety; that is, we have

(5) I = λ1i1 + λ2i2 + · · ·+ λgig (Iσ = λ1iσ
1 + λ2iσ

2 + · · ·+ λgiσ
g)

If only the electromotive force Eσ were imposed, it would induce a current Iσ
0 = Eσ

rσ

in the wire σ. If we introduce the vector I0 = (Iσ
0 ), the equations (4) say that the vector

I0 − I is perpendicular to the variety Γ (i.e. to all the vectors in Γ). We therefore wish to
decompose the given vector I0 into two components

I0 = I + I′,

of which the first I belongs to the variety and the second I′ is perpendicular to it; according
to the theorems of Analytic Geometry, this problem of orthogonal projection always has a
unique solution. It is obtained by substituting (5) into (4)13

(6)
g

∑
k=1

(ih, ik)λk = (ih, I0) (h = 1, 2, . . . , g)

We thus have g linear equations for the g unknowns λ with symmetric coefficients
(ih, ik); these always have one and only one solution, because the corresponding homo-
geneous equations

(7)
g

∑
k=1

(ih, ik)λk = 0

only have the solution λ = 0. This is because, multiplying (7) by λh and summing with
respect to h, we obtain for the vector I defined by the equation (5)

(II) = 0.

Because the Joule effect is always positive, it follows from here that I = 0 and therefore
λ1 = · · · = λg = 0. The problem of the distribution of current arises in this way as one of
the most beautiful applications of n-dimensional geometry.

Kirchhoff has given a different solution to the problem; his method calculates the deter-
minant D of the equations (6). If 1, 2, . . . , g is any set of g edges whose removal converts
the network of conductors into a connected tree,

D = ∑(r1 · r2 · · · · · rg)

where the sum is over all such sets of edges. From this it follows that D 6= 0 and is
positive.

Translated by JAKOB HANSEN

13In modern notation, this forms the normal equations A∗Aλ = A∗I0, where A is the matrix whose
columns are the indicators for the basis cycles ik, and A∗ its adjoint with respect to the inner product defined
by the resistances.


