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1 Introduction

In spectral graph theory, one associates to a combinatorial graph additional
algebraic structures in the form of square matrices whose spectral data is
then investigated and related to the graph. These matrices come in several
variants, most particularly degree and adjacency matrices, Laplacian matrices,
and weighted or normalized versions thereof. In most cases, the size of the
implicated matrix is based on the vertex set, while the structure of the matrix
encodes data carried by the edges.

To say that spectral graph theory is useful is an understatement. Spectral
methods are key in such disparate fields as data analysis [BN03,CL06], the-
oretical computer science [HLW06,CS11], probability theory [LP16], control
theory [Bull8], numerical linear algebra [ST14], coding theory [Spi96], and
graph theory itself [Chu92, BH12|.

Much of spectral graph theory focuses on the Laplacian, leveraging its
unique combination of analytic, geometric, and probabilistic interpretations
in the discrete setting. This is not the complete story. Many of the most well-
known and well-used results on the spectrum of the graph Laplacian return
features that are neither exclusively geometric nor even combinatorial in na-
ture, but rather more qualitative. For example, it is among the first facts of
spectral graph theory that the multiplicity of the zero eigenvalue of the graph
Laplacian enumerates connected components of the graph, and the relative
size of the smallest nonzero eigenvalue in a connected graph is a measure of
approximate dis-connectivity. Such features are topological.

There is another branch of mathematics in which Laplacians hold sway:
Hodge theory. This is the slice of algebraic and differential geometry that uses
Laplacians on (complex) Riemannian manifolds to characterize global features.
The classical initial result is that one recovers the cohomology of the manifold
as the kernel of the Laplacian on differential forms [AMRS8]. For example,
the dimension of the kernel of the Laplacian on 0-forms (R-valued functions)
is equal to the rank of H the 0-th cohomology group (with coefficients in
R), whose dimension is the number of connected components. In spirit, then,
Hodge theory categorifies elements of spectral graph theory.

Hodge theory, like much of algebraic topology, survives the discretization
from Riemannian manifolds to (weighted) cell complexes [Eck45,Fri98]. The
classical boundary operator for a cell complex and its formal adjoint combine
to yield a generalization of the graph Laplacian which, like the Laplacian of
Hodge theory, acts on higher dimensional objects (cellular cochains, as opposed
to differential forms). The kernel of this discrete Laplacian is isomorphic to the
cellular cohomology of the complex with coefficients in the reals, generalizing
the connectivity detection of the graph Laplacian in grading zero. As such,
the spectral theory of the discrete Laplacian offers a geometric perspective
on algebraic-topological features of higher-dimensional complexes. Laplacians
of higher-dimensional complexes have been the subject of recent investiga-
tion [Par13,Stel3,HJ13].
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This is not the end. Our aim is a generalization of both spectral graph
theory and discrete Hodge theory which ties in to recent developments in
topological data analysis. The past two decades have witnessed a burst of
activity in computing the homology of cell complexes (and sequences thereof)
to extract robust global features, leading to the development of specialized
tools, such as persistent homology, barcodes, and more, as descriptors for cell
complexes [Car12, EH10, KMMO04, OPT*17].

Topological data analysis is evolving rapidly. One particular direction of
evolution concerns a change in perspective from working with cell complexes
as topological spaces in and of themselves to focusing instead on data over a
cell complex — viewing the cell complex as a base on which data to be in-
vestigated resides. For example, one can consider scalar-valued data over cell
complexes, as occurs in weighted networks and complexes; or sensor data, as
occurs in target enumeration problems [CGR12]. Richer data involves vector
spaces and linear transformations, as with recent work in cryo-EM [HS11] and
synchronization problems [Banl5|. Recent work in TDA points to a general-
ization of these and related data structures over topological spaces. This is the
theory of sheaves.

We will work exclusively with cellular sheaves [Curl4]. Fix a (regular, lo-
cally finite) cell complex — a triangulated surface will suffice for purposes of
imagination. A cellular sheaf of vector spaces is, in essence, a data structure
on this domain, assigning local data (in the form of vector spaces) to cells and
compatibility relations (linear transformations) between cells of incident as-
cending dimension. These structure maps send data over vertices to data over
incident edges, data over edges to data over incident 2-cells, etc. As a trivial
example, the constant sheaf assigns a rank-one vector space to each cell and
identity isomorphisms according to boundary faces. More interesting is the cel-
lular analogue of a vector bundle: a cellular sheaf which assigns a fixed vector
space of dimension n to each cell and isomorphisms as linear transformations
(with specializations to O(n) or SO(n) as desired).

The data assigned to a cellular sheaf naturally arranges into a cochain com-
plex graded by dimension of cells. As such, cellular sheaves possess a Laplacian
that specializes to the graph Laplacian and the Hodge Laplacian for the con-
stant sheaf. For cellular sheaves of real vector spaces, a spectral theory — an
examination of the eigenvalues and eigenvectors of the sheaf Laplacian — is
natural, motivated, and, to date, unexamined apart from a few special cases
(see §3.6).

This paper sketches an emerging spectral theory for cellular sheaves. Given
the motivation as a generalization of spectral graph theory, we will often spe-
cialize to cellular sheaves over a 1-dimensional cell complex (that is, a graph,
allowing when necessary multiple edges between a pair of vertices). This is
mostly for the sake of simplicity and initial applications, as zero- and one-
dimensional homological invariants are the most readily applicable. However,
as the theory is general, we occasionally point to higher-dimensional side-
quests.
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The plan of this paper is as follows. In §2, we cover the necessary topologi-
cal and algebraic preliminaries, including definitions of cellular sheaves. Next,
§3 gives definitions of the various matrices involved in the extension of spectral
theory to cellular sheaves. Section 4 uses these to explore issues related to har-
monic functions and cochains on sheaves. In §5, we extend various elementary
results from spectral graph theory to cellular sheaves. The subsequent two sec-
tions treat more sophisticated topics, effective resistance (§6) and the Cheeger
inequality (§7), for which we have some preliminary results. We conclude with
outlines of potential applications for the theory in §8 and directions for future
inquiry in §9.

The results and applications we sketch are at the beginnings of the subject,
and a great deal more in way of fundamental and applied work remains.

This paper has been written in order to be readable without particular ex-
pertise in algebraic topology beyond the basic ideas of cellular homology and
cohomology. Category-theoretic terminology is used sparingly and for conci-
sion. Given the well-earned reputation of sheaf theory as difficult for the non-
specialist, we have provided an introductory section with terminology and core
concepts, noting that much more is available in the literature [Bre97,KS90].
Our recourse to the cellular theory greatly increases simplicity, readability, and
applicability, while resonating with the spirit of spectral graph theory. There
are abundant references available for the reader who requires more information
on algebraic topology [Hat01], applications thereof [EH10, Ghr14], and cellular
sheaf theory [Curl4,Ghrl4].

2 Preliminaries
2.1 Cell Complexes

Definition 2.1 A regular cell complex is a topological space X with a parti-
tion into subspaces {X, }acpy satisfying the following conditions:

1. For each x € X, every sufficiently small neighborhood of x intersects finitely
many X,.

2. For all o, 8, Xo N Xg # @ only if X5 C X,.

Every X, is homeomorphic to R™= for some n,,.

4. For every «, there is a homeomorphism of a closed ball in R™ to X, that
maps the interior of the ball homeomorphically onto X,,.

@

Condition (2) implies that the set Px has a poset structure, given by 5 < «
iff X5 C X,. This is known as the face poset of X. The regularity condition
(4) implies that all topological information about X is encoded in the poset
structure of Px. For our purposes, we will identify a regular cell complex with
its face poset, writing the incidence relation S <J«. The class of posets that
arise in this way can be characterized combinatorially [Bjé84]. For our pur-
poses, a morphism of cell complexes is a morphism of posets between their
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face incidence posets that arises from a continuous map between their asso-
ciated topological spaces. In particular, morphisms of simplicial and cubical
complexes will qualify as morphisms of regular cell complexes.

The class of regular cell complexes includes simplicial complexes, cubi-
cal complexes, and so-called multigraphs (as 1-dimensional cell complexes).
As nearly every space that can be characterized combinatorially can be repre-
sented as a regular cell complex, these will serve well as a default class of spaces
over which to develop a combinatorial spectral theory of sheaves. We note that
the spectral theory of complexes has heretofore been largely restricted to the
study of simplicial complexes [SBHT18]. A number of our results will special-
ize to results about the spectra of Hodge Laplacians of regular cell complexes
by restricting to the constant sheaf.

A few notions associated to cell complexes will be useful.

Definition 2.2 The k-skeleton of a cell complex X, denoted X (¥), is the sub-
complex of X consisting of cells of dimension at most k.

Definition 2.3 Let o be a cell of a regular cell complex X. The star of o,
denoted st(o), is the set of cells 7 such that o<r.

Topologically, st(o) is the smallest open collection of cells containing o, a
role we might denote as the “smallest cellular neighborhood” of o. Stars serve
an important purpose in giving combinatorial analogues of topological notions
for maps. For instance, a morphism f : X — Y of cell complexes may be locally
injective as defined on the topological spaces. Topologically, the condition for
local injectivity is simply that every point in X have a neighborhood on which
f is injective. Translating this to cell complexes, we require that for every cell
o € X, f is injective on st(o).

Topological continuity ensures that the preimage of a star st(c) under a
cell morphism f : X — Y is a union of stars; if f is locally injective, we see
that it must be a disjoint union of stars. A locally injective map is, further, a
covering map if on each component of f~!(st(c)), f is an isomorphism. That
is, the fiber of a star consists of a disjoint union of copies of that star.

2.2 Cellular Sheaves

Let X be a regular cell complex. A cellular sheaf attaches data spaces to the
cells of X together with relations that specify when assignments to these data
spaces are consistent.

Definition 2.4 A cellular sheaf of vector spaces on a regular cell complex X
is an assignment of a vector space F(o) to each cell o of X together with a
linear transformation F,q,: F(o) — F(7) for each incident cell pair o <7.
These must satisfy both an identity relation F,gq, = id and the composition
condition:

pLodt = Foar = Fogr 0 Fpgo-
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The vector space F(o) is called the stalk of F at 0. The maps F, g, are called
the restriction maps.

For experts, this definition at first seems only reminiscent of the notion
of sheaves familiar to topologists. The depth of the relationship is explained
in detail in [Curl4], but the essence is this: the data of a cellular sheaf on X
specifies spaces of local sections on a cover of X given by open stars of cells.
This translates in two different ways into a genuine sheaf on a topological space.
One may either take the Alexandrov topology on the face incidence poset of the
complex, or one may view the open stars of cells and their natural refinements
a basis for the topology of X. There then exists a natural completion of the
data specified by the cellular sheaf to a constructible sheaf on X.

One may compress the definition of a cellular sheaf to the following: If X
is a regular cell complex with face incidence poset Px, viewed as a category,
a cellular sheaf is a functor F: Py — Vecty to the category of vector spaces
over a field k.

Definition 2.5 Let F be a cellular sheaf on X. A global section x of F is a
choice z, € F(o) for each cell o of X such that z, = F,q,2, for all o <.
The space of global sections of F is denoted I'(X;F).

Perhaps the simplest sheaf on any complex is the constant sheaf with stalk
V, which we will denote V. This is the sheaf with all stalks equal to V and all
restriction maps equal to the identity.

2.2.1 Cosheaves

In many situations it is more natural to consider a dual construction to a
cellular sheaf. A cellular cosheaf preserves stalk data but reverses the direction
of the face poset, and with it, the restriction maps.

Definition 2.6 A cellular cosheaf of vector spaces on a regular cell complex X
is an assignment of a vector space F (o) to each cell o of X together with linear
maps Fyqr: F(7) = F(0) for each incident cell pair o <7 which satisfies the
identity (Fyge = id) and composition condition:

P@U@T = fpng: pdo © S odr-

More concisely, a cellular cosheaf is a functor Py’ — Vecty. The con-
travariant functor Hom(e, k) : Vect,” — Vecty gives every cellular sheaf F a

dual cosheaf F whose stalks are Hom(F (), k).

2.2.2 Homology and Cohomology

The cells of a regular cell complex have a natural grading by dimension. By
regularity of the cell complex, this grading can be extracted from the face
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incidence poset as the height of a cell in the poset. This means that a cellular
sheaf has a graded vector space of cochains

CHX;F) = @ Flo.

dim(o)=k

To develop this into a chain complex, we need a boundary operator and
a notion of orientation — a signed incidence relation on Px. This is a map
[e: o] : Px x Px — {0,+1} satisfying the following conditions:

1. If [0 : 7] # 0, then o<{7 and there are no cells between ¢ and 7 in the
incidence poset.

2. For any odr, Z,\/EPX [o:9][y:7]=0.

Given a signed incidence relation on Py, there exist coboundary maps 6% :
Ck(X; F) — CF1(X; F). These are given by the formula

5k|f(o) = Z [J : T]foﬂTa
dim(7)=k+1

or equivalently,

(0*2), = > [0 7 Foar(@s).

dim(o)=k

Here we use subscripts to denote the value of a cochain in a particular stalk;
that is, z, is the value of the cochain z in the stalk F(o).

It is a simple consequence of the properties of the incidence relation and the
commutativity of the restriction maps that 6% 06*~1 = 0, so these coboundary
maps define a cochain complex and hence a cohomology theory for cellular
sheaves. In particular, H%(X; F) is naturally isomorphic to I'(X; F), the space
of global sections. An analogous construction defines a homology theory for
cosheaves. Cosheaf homology may be thought of as dual to sheaf cohomology
in a Poincaré-like sense. That is, frequently the natural analogue of degree zero
sheaf cohomology is degree n cosheaf homology. A deeper formal version of this
fact, exploiting an equivalence of derived categories, may be found in [Curl4,
ch. 12].

There is a relative version of cellular sheaf cohomology. Let A be a sub-
complex of X. There is a natural subspace of C*(X; F) consisting of cochains
which vanish on stalks over cells in A. The coboundary of a cochain which van-
ishes on A also vanishes on A, since any cell in A*+1) has only cells in A*) on
its boundary. We therefore get a subcomplex C*(X, A; F) of C*(X;F). The
cohomology of this subcomplex is the relative sheaf cohomology H® (X, A; F).
The natural maps between these spaces of cochains constitute a short exact
sequence of complexes

0->C* (X, A F) - C* (X, F) = C* (A F) = 0,
from which a long exact sequence for relative sheaf cohomology arises:

0= HY(X,A; F) = HY(X; F) = HY (A F) = H' (X, A, F) — -+
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2.2.8 Sheaf Morphisms

Definition 2.7 If F and G are sheaves on a cell complex X, a sheaf morphism
¢ : F — G is a collection of maps ¢, : F(0) — G(o) for each cell o of X, such
that for any o7, ¢; 0 Fogr = Gogr © ¢s. Equivalently, all diagrams of the
following form commute:

)

o)

(
[

F(o SRS
fagfl

F(r) == G(7)

This commutativity condition assures that a sheaf morphism ¢ : F — G
induces maps * : C*(X; F) — C*(X;G) which commute with the cobound-
ary maps, resulting in the induced maps on cohomology H*¢ : H*(X;F) —
H*(X;9).

2.2.4 Sheaf Operations

There are several standard operations that act on sheaves to produce new
sheaves.

Definition 2.8 (Direct sum) If 7 and G are sheaves on X, their direct sum
F @G is a sheaf on X with (F & G)(0) = F(0) ® G(0). The restriction maps
are (F ® G)ogr = Fodr ® Gogr-

Definition 2.9 (Tensor product) If 7 and G are sheaves on X, their tensor
product F ®G is a sheaf on X with (F®G)(c) = F(0) ® G(0). The restriction
maps are (F ® G)ogr = Fogr @ Gogr-

Definition 2.10 (Pullback) If f : X — Y is a morphism of cell complexes
and F is a sheaf on Y, the pullback f*F is a sheaf on X with f*F (o) = F(f (o))
and (f*Fogr = Ffo)<r(r)-

Definition 2.11 (Pushforward) The full definition of the pushforward of
a cellular sheaf is somewhat more categorically involved than the previous
constructions. If f: X — Y is a morphism of cell complexes and F is a sheaf
on X, the pushforward f.JF is a sheaf on Y with stalks f,F (o) given as the
limit lim,qf(;y F(7). The restriction maps are induced by the restriction maps
of F, since whenever o<lo’, the cone for the limit defining f,F (o) contains the
cone for the limit defining f.F (o), inducing a unique map f.F (o) = f.F(c’).

In this paper, we will mainly work with pushforwards over locally injective
cell maps, that is, those whose geometric realizations are locally injective (see
§2.1). If f : X — Y is locally injective, every cell o € X maps to a cell
of the same dimension, and for every cell ¢ € Y, f~I(st(0)) is a disjoint
union of subcomplexes, each of which maps injectively to Y. In this case,
[rF (o) ~ @U’Gf*l(a) F(o'), and (f*F)oqr = @(g/gw)erl(ggr) Forgrr. This
computational formula in fact holds more generally, if the stars of cells in
f~Y(o) are disjoint.
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Those familiar with the definitions of pushforward and pullback for sheaves
over topological spaces will note a reversal of fates when we define sheaves over
cell complexes. Here the pullback is simple to define, while the pushforward is
more involved. This complication arises because cellular sheaves are in a sense
defined pointwise rather than over open sets.

3 Definitions
3.1 Weighted Cellular Sheaves

Let k = R or C. A weighted cellular sheaf is a cellular sheaf with values in
k-vector spaces where the stalks have additionally been given an inner product
structure. Adding the condition of completeness to the stalks, one may view
this as a functor Py — Hilby, where Hilby is the category whose objects are
Hilbert spaces over k and whose morphisms are (bounded) linear maps.

The inner products on stalks of F extend by the orthogonal direct sum to
inner products on C*(X; F), making these Hilbert spaces as well. The canon-
ical inner products on direct sums and subspaces of Hilbert spaces give the
direct sum and tensor product of weighted cellular sheaves weighted struc-
tures. Similarly, the pullbacks and pushforwards (over locally injective maps)
of a weighted sheaf have canonical weighted structures given by their compu-
tational formulae in §2.2.4.

Every morphism T : V' — W between Hilbert spaces admits an adjoint
map T* : W — V, determined by the property that for all v € V,;w € W,
(w, Tv) = (T*w,v). One may readily check that (T*)* = T. This fact gives the
category Hilby a dagger structure, that is, a contravariant endofunctor 1 (here
the adjoint operation *) which acts as the identity on objects and squares to
the identity. In a dagger category, the notion of unitary isomorphisms makes
sense: they are the invertible morphisms 7" such that 7T = 71,

The dagger structure of Hilby introduces some categorical subtleties into
the study of weighted cellular sheaves. The space of global sections of a cellu-
lar sheaf is defined in categorical terms as the limit of the functor X — Vect
defining the sheaf. This defines the space of global sections up to unique iso-
morphism. We might want a weighted space of global sections to be a sort of
limit in Hilby which is defined up to unique wunitary isomorphism. This is the
notion of dagger limit, recently studied in [HK19]. Unfortunately, this work
showed that Hilby does not have all dagger limits; in particular, pullbacks
over spans of noninjective maps do not exist. As a result, there is no single
canonical way to define an inner product on the space of global sections of a
cellular sheaf F. There are two approaches that seem most natural, however.
One is to view the space of global sections of F as ker 6% with the natural
inner product given by inclusion into C°(X;F). The other is to view global
sections as lying in @, F(o). We will generally take the view that global
sections are a subspace of CY(X;F); that is, we will weight I'(X; F) by its
canonical isomorphism with #°(X; F), as defined in §3.2.
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The dagger structure on Hilby gives a slightly different way to construct
a dual cosheaf from a weighted cellular sheaf F. Taking the adjoint of each
restriction map reverses their directions and hence yields a cosheaf with the
same stalks as the original sheaf. From a categorical perspective, this amounts
to composing the functor F with the dagger endofunctor on Hilbg. When
stalks are finite dimensional, this dual cosheaf is isomorphic to the cosheaf F
defined in §2.2.1 via the dual vector spaces of stalks. In this situation, we have
an isomorphism between the stalks of F and its dual cosheaf. This is reminis-
cent of the bisheaves recently introduced by MacPherson and Patel [MP18].
However, the structure maps F(o) — F(o) will rarely commute with the re-
striction and extension maps as required by the definition of the bisheaf —
this only holds in general if all restriction maps are unitary. The bisheaf con-
struction is meant to give a generalization of local systems, and as such fits
better with our discussion of discrete vector bundles in §3.5.

3.2 The Sheaf Laplacian

Given a chain complex of Hilbert spaces C° — C' — --- we can construct the
Hodge Laplacian A = (§+6*)? = 6*6 + 65*. This operator is naturally graded
into components A* : C¥ — CF with A* = (§%)*§% + 6k=1(6k=1)*. This op-
erator can be further separated into up- (coboundary) and down- (boundary)
Laplacians A% = (6%)*¢% and AF = §*=1(6*=1)* respectively.

A key observation is that on a finite-dimensional Hilbert space, ker §* =
(im §)*+. For if §*z = 0, then for all y, 0 = (§*z,y) = (v, y), so that z L im 4.
This allows us to express the kernels and images necessary to compute coho-
mology purely in terms of kernels. This is the content of the central theorem
of discrete Hodge theory:

Theorem 3.1 Let C° — C' — --- be a chain complex of finite-dimensional
Hilbert spaces, with Hodge Laplacians A*. Then ker AF = H*(C*).

Proof. By definition, H*(C*) = ker 6*/im 6*~!. In a finite dimensional Hilbert
space, ker % /im 6*~1 is isomorphic to the orthogonal complement of im §%~!
in ker 6%, which we may write (ker 6¥) N (im §*71)+ = (ker §%) N (ker(6*~1)*).
So it suffices to show that ker A* = (ker 6%) N (ker(6*~1)*). Note that ker 6* =
ker(6%)* 6% = ker A% and similarly for A* . So we need to show that ker(A% +
AF) = ker Ai N ker A* | which will be true if im Ai Nim A* = 0. But this is
true because im A¥ = im(6%)* = (ker 6*)* and im A* = im "~ C keré*. O

The upshot of this theorem is that the kernel of A* gives a set of canonical
representatives for elements of H*(C*). This is commonly known as the space
of harmonic cochains, denoted H*(C*®). In particular, the proof above implies
that there is an orthogonal decomposition C* = H* @ im 6~ @ im(6%)*.

When the chain complex in question is the complex of cochains for a
weighted cellular sheaf F, the Hodge construction produces the sheaf Lapla-
cians. The Laplacian which is easiest to study and most immediately in-
teresting is the degree-0 Laplacian, which is a generalization of the graph
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Laplacian. We can represent it as a symmetric block matrix with blocks in-
0

dexed by the vertices of the complex. The entries on the diagonal are A}, =
nge FogeFvge and the entries on the off-diagonal are Agﬂ, = —FugeFve
where e is the edge between v and u. Laplacians of other degrees have similar
block structures.

The majority of results in combinatorial spectral theory have to do with
up-Laplacians. We will frequently denote these L* by analogy with spectral
graph theory, where L typically denotes the (non-normalized) graph Laplacian.
In particular, we will further elide the index k when k = 0, denoting the graph
sheaf Laplacian by simply L. A subscript will be added when necessary to
identify the sheaf, e.g. L or Aﬁ-.

Weighted labeled graphs are in one-to-one correspondence with graph Lapla-
cians. The analogous statement is not true of sheaves on a graph. For instance,

the sheaves in Figure 3.1 have coboundary maps with matrix representations

11 1
10| and [“53 ﬁ3],
01 Vi

which means that the Laplacian for each is equal to

Ewl

However, these sheaves are not unitarily isomorphic, as can be seen immedi-
ately by checking the stalk dimensions. More pithily, one cannot hear the shape
of a sheaf. One source of the lossiness in the sheaf Laplacian representation is
that restriction maps may be the zero morphism, effectively allowing for edges
that are only attached to one vertex. More generally, restriction maps may fail
to be full rank, which means that it is impossible to identify the dimensions
of edge stalks from the Laplacian.

L L

R —» R €=/—/— R R —» R2 €«=—— R

\v// \°\0/°/

Fig. 3.1 Two nonisomorphic sheaves with the same Laplacian.
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3.2.1 Harmonic Cochains

The elements of ker A¥ = H* are known as harmonic k-cochains. More gener-
ally, a k-cochain may be harmonic on a subcomplex:

Definition 3.2 A k-cochain x of a sheaf F on a cell complex X is harmonic
on a set S of k-cells if (A%x)|s = 0.

When k£ = 0 and F is the constant sheaf (i.e., in spectral graph theory),
this can be expressed as a local averaging property: For each v € S, z, =
di > wmw Tu, Where ~ indicates adjacency and d,, is the degree of the vertex v.

3.2.2 Identifying Sheaf Laplacians

Given a regular cell complex X and a choice of dimension for each stalk, one
can identify the collection of matrices which arise as coboundary maps for a
sheaf on X as those matrices satisfying a particular block sparsity pattern.
This sparsity pattern controls the number of nonzero blocks in each row of
the matrix. Restricting to d°, we get a matrix whose rows have at most two
nonzero blocks. The space of matrices which arise as sheaf Laplacians is then
the space of matrices which have a factorization L = §*0, where 4 is a matrix
satisfying this block sparsity condition. Boman et al. studied this class of ma-
trices when the blocks have size 1 x 1, calling them matrices of factor width
two [BCPTO5]. They showed that this class coincides with the class of sym-
metric generalized diagonally dominant matrices, those matrices L for which
there exists a positive diagonal matrix D such that DLD is diagonally domi-
nant. Indeed, the fact that sheaves on graphs are not in general determined by
their Laplacians is in part a consequence of the nonuniqueness of width-two
factorizations.

3.3 Approaching Infinite-Dimensional Laplacians

The definitions given in this paper are adapted to the case of sheaves of finite
dimensional Hilbert spaces over finite cell complexes. Relaxing these finiteness
constraints introduces new complications.

The spaces of cochains naturally acquire inner products by taking the
Hilbert space direct sum. These are not the same as taking the algebraic
direct sum or product of stalks. However, there is a sequence of inclusions of
complexes

C*(X;F) C L*C*(X;F) CC*(X;F)

inducing algebraic maps between the corresponding compactly supported, L?,
and standard sheaf cohomology theories.

The theory of abstract complexes of possibly infinite-dimensional Hilbert
spaces has been developed in [BL92]. This paper explains conditions for the
spaces of harmonic cochains of a complex to be isomorphic with the algebraic



Toward a Spectral Theory of Cellular Sheaves 13

cohomology of the complex. A particularly nice condition is that the complex
have finitely generated cohomology, which implies that the total coboundary
map is a Fredholm operator. More generally, if the images of the coboundary
and its adjoint are closed, the spaces of harmonic cochains will be isomorphic
to the cohomology.

Further issues arise when we consider the coboundary maps 6%. For spec-
tral purposes, it is in general desirable for these to be bounded linear maps,
for which we must make some further stipulations. Sufficient conditions for
coboundary maps to be bounded are as follows:

Proposition 3.3 Let F be a sheaf of Hilbert spaces on a cell compler X.
Suppose that there exists some My, such that for every pair of cells o<t with
dimo =k and dim7 = k+1, | Foq-|| < My. Further suppose that every k-cell
in X has at most d* cofaces of dimension k + 1, and every (k + 1)-cell in X
has at most dy11 faces of dimension k. Then 5’}_— s a bounded linear operator.

Proof. We compute:

2

lo¥z)> = > @ a)P < Y | Do IFearal

dim 7=k-+1 dim 7=k-+1 odr
2
< D X Mlaol | < M7 dira )l
dimr=k+4+1 \o<dr dim 7=k+1 odTr
= Mider1 Y, Y ool < Midyad® Y lao|® = Midgyd" |,
dim o=k ot dim o=k

O

If 6 is bounded, its associated Laplacians A% = (§%)*6* and AR =
§F(6F)* are also bounded. As bounded self-adjoint operators, their spectral
theory is relatively unproblematic. Their spectra consist entirely of approx-
imate eigenvalues, those A for which there exists a sequence of unit vectors
{z} such that ||A% z) — Azy|| — 0.

If §% is not just bounded, but compact, the Laplacian spectral theory be-
comes even nicer. In this situation, the spectrum of A’i has no continuous part,
and hence consists purely of eigenvalues. An appropriate decay condition on
norms of restriction maps ensures compactness.

Proposition 3.4 Let F be a sheaf of Hilbert spaces on a cell compler X.
Suppose that for all ot with dimo = k and dimT = k + 1, the restriction
map Fegr for is compact, and further that ZggTHfaSlT” < oco. Then 551 s a
compact linear operator.

Proof. It is clear that ¢6* cannot be compact if any one of its component
restriction maps fails to be compact. Suppose first that all restriction maps
are finite rank, and fix an ordering of (k+1)-cells of X, defining the orthogonal



14 Jakob Hansen, Robert Ghrist

projection operators P’ : C**1(X; F) — CkT1(X; F) sending stalks over (k +
1) cells of index greater than i to zero. Then P§¥ is a finite-rank operator and

IP76* = "1 < D7 > I Foan

>t Jﬂ‘rj

which goes to zero as i — co. In the case that the restriction maps are compact,
pick an approximating sequence for each by finite rank maps and combine the
two approximations. O

An important note is that when C*(X; F) is infinite dimensional and §* is
compact with finite dimensional kernel, the eigenvalues of Ai will accumulate
at zero. This means that there will be no smallest nontrivial eigenvalue for
such Laplacians.

Most of the difficulties considered here already arise in the study of spectra
of infinite graphs. The standard Laplacian associated to an infinite graph is
bounded but not compact, while a proper choice of weights decaying at infinity
makes it compact.

The study of sheaves of arbitrary Hilbert spaces on not-necessarily-finite
cell complexes is interesting, and indeed suggests itself in certain applications.
However, for the initial development and exposition of the theory, we have
elected to focus on the (still quite interesting) finite-dimensional case. This is
sufficient for most applications we have envisioned, and avoids the need for
repeated qualifications and restrictions.

For the balance of this paper, we will assume that all cell complexes are
finite and all vector spaces are finite dimensional, giving where possible proofs
that generalize in some way to the infinite-dimensional setting. Most results
that do not explicitly require a finite complex will extend quite directly to
the case of sheaves with compact coboundary operators. Proofs not relying
on the Courant-Fischer theorem will typically apply even to situations where
coboundary operators are merely bounded, although their conclusions may be
somewhat weakened.

3.4 The Normalized Laplacian and Weights

Many results in spectral graph theory rely on a normalized version of the stan-
dard graph Laplacian, which is typically defined in terms of a rescaling of the
standard Laplacian. Let D be the diagonal matrix whose nonzero entries are
the degrees of vertices; then the normalized Laplacian is £ = D~'/2LD~1/2,
This definition preserves the Laplacian as a symmetric matrix, but it obscures
the true meaning of the normalization. The normalized Laplacian is the stan-
dard Laplacian with a different choice of weights for the vertices. The matrix
D~Y2L.D~1/2 is similar to D' L, which is self adjoint with respect to the inner
product (z,y) = xT Dy. In this interpretation, each vertex is weighted propor-
tionally to its degree. Viewing the normalization process as a reweighting of
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cells leads to the natural definition of normalized Laplacians for simplicial
complexes given by Horak and Jost [HJ13].

Indeed, following Horak and Jost’s definition for simplicial complexes, we
propose the following extension to sheaves.

Definition 3.5 Let F be a weighted cellular sheaf defined on a regular cell
complex X. We say F is normalized if for every cell o of X and every x,y €
F(o) N (ker o)+, (dz, dy) = (z,y).

Lemma 3.6 Given a weighted sheaf F on a finite-dimensional cell complex
X, it is always possible to reweight F to a normalized version.

Proof. Note that if X has dimension k, the normalization condition is trivially
satisfied for all cells o of dimension k. Thus, starting at cells of dimension
k — 1, we recursively redefine the inner products on stalks. If o is a cell of
dimension k—1, let I1, be the orthogonal projection F (o) — F(o)Nker d. Then
define the normalized inner product (e, )Y on F (o) to be given by (z,9)Y =
(0(id —IIy)x,0(id — I )y) + (I1,x, IT,y). It is clear that this reweighted sheaf
satisfies the condition of Definition 3.5 for cells of dimension k& and k£ — 1. We
may then perform this operation on cells of progressively lower dimension to
obtain a fully normalized sheaf. O

Note that there is an important change of perspective here: we do not
normalize the Laplacian of a sheaf, but instead normalize the sheaf itself, or
more specifically, the inner products associated with each stalk of the sheaf.

If we apply this process to a sheaf F on a graph G, there is an immediate
interpretation in terms of the original sheaf Laplacian. Let D be the block
diagonal of the standard degree 0 sheaf Laplacian, and note that for 1 ker L,
(x, Dx) is the reweighted inner product on C°(G; F). In particular, the adjoint
of § with respect to this inner product has the form DT§T, where D' is the
Moore-Penrose pseudoinverse of D, so that the matrix form of the reweighted
Laplacian with respect to this inner product is Df L. Changing to the standard
basis then gives £ = D/2LD1/2.

3.5 Discrete Vector Bundles

A subclass of sheaves of particular interest are those where all restriction maps
are invertible. These sheaves have been the subject of significantly more study
than the general case, since they extend to locally constant sheaves on the ge-
ometric realization of the cell complex. The Riemann-Hilbert correspondence
describes an equivalence between locally constant sheaves (or cosheaves) on X,
local systems on X, vector bundles on X with a flat connection, and represen-
tations of the fundamental groupoid of X. (See, e.g., [DKO1, ch. 5] or [ZS09]
for a discussion of some aspects of this correspondence.) When we represent
a local system by a cellular sheaf or cosheaf, we will call it a discrete vector
bundle.
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One way to understand the space of 0-cochains of a discrete vector bun-
dle is as representing a subspace of the sections of a geometric realization of
the associated flat vector bundle, defined by linear interpolation over higher-
dimensional cells. The coboundary map can be seen as a sort of discretization
of the connection, whose flatness is manifest in the fact that 62 = 0.

Discrete vector bundles have some subtleties when we study their Lapla-
cians. The sheaf-cosheaf duality corresponding to a local system, given by
taking inverses of restriction maps, is not in general the same as the duality
induced by an inner product on stalks. Indeed, these duals are only the same
when the restriction maps are unitary — their adjoints must be their inverses.

The inner product on stalks of a cellular sheaf has two roles: it gives a
relative weight to vectors in each stalk, but via the restriction maps also gives
a relative weight to cells in the complex. This second role complicates our
interpretation of certain sorts of vector bundles. For instance, one might wish
to define an O(n) discrete vector bundle on a graph to be a cellular sheaf of
real vector spaces where all restriction maps are orthogonal. However, from the
perspective of the degree-0 Laplacian, a uniform scaling of the inner product
on an edge does not change the orthogonality of the bundle, but instead in
some sense changes the length of the edge, or perhaps the degree of emphasis
we give to discrepancies over that edge. So a discrete O(n)-bundle should be
one where the restriction maps on each cell are scalar multiples of orthonormal
maps.

That is, for each cell o, we have a positive scalar «,, such that for every
o7, the restriction map F,g, is an orthonormal map times a,/a,. One way
to think of this is as a scaling of the inner product on each stalk of F. Fre-
quently, especially when dealing with graphs, we set a, = 1 when dim(c) = 0,
but this is not necessary. (Indeed, when dealing with the normalized Laplacian
of a graph, we have a,, = \/d,.)

The rationale for this particular definition is that in the absence of a basis,
inner products are not absolutely defined, but only in relation to maps in or out
of a space. Scaling the inner product on a vector space is meaningless except
in relation to a given collection of maps, which it transforms in a uniform way.

As a special case of this definition, it will be useful to think about weighted
versions of the constant sheaf. These are isomorphic to the ‘true’ constant
sheaf, but not unitarily so. Weighted constant sheaves on a graph are analo-
gous to weighted graphs. The distinction between the true constant sheaf and
weighted versions arises because it is often convenient to think of the sections
of a cellular sheaf as a subspace of CY(X;F). As a result, we often only want
our sections to be constant on 0-cells, allowing for variation up to a scalar mul-
tiple on higher-dimensional cells. This notion will be necessary in §8.6 when
we discuss approximations of cellular sheaves.
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3.6 Comparison with Previous Constructions

Friedman, in [Fril5|, gave a definition of a sheaf' on a graph, developed a
homology theory, and suggested constructing sheaf Laplacians and adjacency
matrices. The suggestion that one might develop a spectral theory of sheaves
on graphs has remained until now merely a suggestion.

The graph connection Laplacian, introduced by Singer and Wu in [SW12],
is simply the sheaf Laplacian of an O(n)-vector bundle over a graph. This
construction has attracted significant interest from a spectral graph theory
perspective, including the development of a Cheeger-type inequality [BSS13]
and a study of random walks and sparsification [CZ12]. Connection Laplacian
methods have proven enlightening in the study of synchronization problems.
Others have approached the study of vector bundles, and in particular line
bundles, over graphs without reference to the connection Laplacian, studying
analogues of spanning trees and the Kirchhoff theorems [Ken11, CCK13]. Other
work on discrete approximations to connection Laplacians of manifolds has
analyzed similar matrices [Man07].

Gao, Brodski, and Mukherjee developed a formulation in which the graph
connection Laplacian is explicitly associated to a flat vector bundle on the
graph and arises from a twisted coboundary operator [GBM16]. This cobound-
ary operator is not a sheaf coboundary map and has some difficulties in its
definition. These arise from a lack of freedom to choose the basis for the
space of sections over an edge of the graph. Further work by Gao uses a sheaf
Laplacian-like construction to study noninvertible correspondences between
probability distributions on surfaces [Gaol6|.

Wu et al. [WRWX18] have recently proposed a construction they call a
weighted simplicial complex and studied its associated Laplacians. These are
cellular cosheaves where all stalks are equal to a given vector space and re-
striction maps are scalar multiples of the identity. Their work discusses the
cohomology and Hodge theory of weighted simplicial complexes, but did not
touch on issues related to the Laplacian spectrum.

4 Harmonicity

As a prelude to results about the spectra of sheaf Laplacians, we will discuss
issues related to harmonic cochains on sheaves. While these do not immediately
touch on the spectral properties of the Laplacian, they are closely bound with
its algebraic properties.

4.1 Harmonic Extension

Proposition 4.1 Let X be a reqular cell complex with a weighted cellular sheaf
F. Let B C X be a subcomplex and let x|p € C*(B;F) be an F-valued k-

1 In our terminology, Friedman’s sheaves are cellular cosheaves.
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cochain specified on B. If H*(X, B; F) = 0, then there exists a unique cochain
x € C*(X; F) which restricts to z|g on B and is harmonic on S = X \ B.

Proof. A matrix algebraic formulation suffices. Representing A% in block form
as partitioned by B and S, the relevant equation is

S S -]

Since y is indeterminate, we can ignore the second row of the matrix, giving
the equation AX(S,S)z|s + AL(S, B)z|p = 0. We can write A%(S,S) =
(6%]5)*6%|s + ((6%=1)*|s)*(6*~1)*|s, which is very close to the k-th Hodge
Laplacian of the relative cochain complex

o= CFYX,B;F) —» CHX,B; F) — CHY(X,B; F) — - - .

Indeed, we can exploit the fact that this is a subcomplex of C*(X; F) to com-
pute its Hodge Laplacian in terms of the coboundary maps of C*(X;F). The
coboundary map dg of C*(X, B; F) is simply the restriction of the cobound-
ary map 0 of C*(X;F) to the subcomplex: 6% = 781§k where 7k is
the orthogonal projection C*(X;F) — C¥(X,B;F) and 4% the inclusion
C*(X,B; F) — Ck(X; F). Note that 7% and i are adjoints, and that i%7k is
the identity on im 62‘1. We may therefore write the Hodge Laplacian of the
relative complex as

AR(X, B; F) = (85)"05 + 65" (657")"
= mh (%) it a6kl + ahoh Tl Ik (6
= wg(0F)*oFig + mEoh il g (80 i
Meanwhile, we can write the submatrix
AR (S,8) = wh(6F)*skik + okl (sF )"k
It is then immediate that ker(A% (S, S)) C ker A*(X, B; F), so that Ak(S, S)
is invertible if H*(X, B; F) = 0. O

If we restrict to up- or down-Laplacians, a harmonic extension always ex-
ists, even if it is not unique. This is because, for instance, im(6*|5)*d*|z C
im(6%|s)*6%|s. In particular, this implies that harmonic extension is always
possible for 0-cochains, with uniqueness if and only if H°(X, B; F) = 0.

4.2 Kron Reduction

Kron reduction is one of many names given to a process of simplifying graphs
with respect to the properties of their Laplacian on a boundary. If G is a
connected graph with a distinguished set of vertices B, which we consider as a
sort of boundary of G, Proposition 4.1 shows that there is a harmonic extension
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map F : RE — RY(E) It is then possible to construct a graph G’ on B such
that for every function x on the vertices of G’, we have Lgrx = npLgE(z),
where 7p is the orthogonal projection map RV(%) — RP. Indeed, letting
S =V(G)\ B, we have E(z)|s = —Lg(S,S) ' Lg(S, B)z, so

Loz = tgLgE(x) = Lg(B, B)r — Lg(B, S)Lg(S,S) ' La(S, B)x.
Therefore,
Ler = La(B, B) — La(B, S)La(S,S) "' La(S, B),

that is, Lg is the Schur complement of the (B, B) block of Lg. It is also the
Laplacian of a graph on B:

Theorem 4.2 (see [DB13]) If L¢ is the Laplacian of a connected graph G,
and B a subset of vertices of G, then Lg: = Lg(B, B)—La (B, S)La(S,S) ' Lg(S, B)
is the Laplacian of a graph with vertex set B.

A physically-inspired way to understand this result (and a major use of
Kron reduction in practice) is to view it as reducing a network of resistors
given by G to a smaller network with node set B that has the same electrical
behavior on B as the original network. In this guise, Kron reduction is a high-
powered version of the Y-A and star-mesh transforms familiar from circuit
analysis. Further discussion of Kron reduction and its various implications
and applications may be found in [DB13].

Can we perform Kron reduction on sheaves? That is, given a sheaf F
on a graph G with a prescribed boundary B, can we find a sheaf Fp on a
graph with vertex set B only such that for every x € C°(B;Fp) we have
Lryx = TcoB,ry) LFE(x), where E(x) is the harmonic extension of x to G7

The answer is, in general, no. Suppose we want to remove the vertex v
from our graph, i.e., B = G\ {v}. Let D, = nge vaeFvde = Lyy. To
eliminate the vertex v we apply the condition (Lz(z, E(z)))(v) = 0, and take a
Schur complement, replacing L(B, B) with L(B, B)—L(B,v)D;'L(v, B). This
means that we add to the entry L(w,w’) the map f;QeFvgeDglfjge,fw/ge/,
where e is the edge between v and w, and e’ the edge between v and w’. This
does not in general translate to a change in the restriction maps for the edge
between w and w’. In general, Kron reduction is not possible for sheaves.

In particular, if z € C(G; F) is a section of F, its restriction to B must
be a section of Fp. Conversely, if x is not a section, its restriction to B cannot
be a section of Fg. But we can construct sheaves with a space of sections on
the boundary that cannot be replicated with a sheaf on the boundary vertices
only. For instance, take the star graph with three boundary vertices, with
stalks R over boundary vertices and edges, and R? over the internal vertex.
Take as the restriction maps from the central vertex restriction onto the first
and second components, and addition of the two components. See Figure 4.1
for an illustration.
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Fig. 4.1 A sheaf illustrating the general impossibility of Kron reduction.

Note that a global section of this sheaf is determined by its value on the
central vertex. If we label the boundary vertices counterclockwise starting at
the top, the space of global sections for Fp must have as a basis

1 1
xr1 = 1 s T2 = 0
0 1

But there is no sheaf on a graph with vertex set B which has this space of
global sections. To see this, note that if ; is a section, the map from F(v1)
to F(vs) must be the zero map, and similarly for the map from F(v2) to
F(vs). Similarly, if x5 is a section, the maps F(v1) — F(ve) and F(v3) —
F(vg) must be zero. But this already shows that the vector [1 0 O]T must
be a section, giving Fp a three-dimensional space of sections. The problem
is that the internal node allows for constraints between boundary nodes that
cannot be expressed by purely pairwise interactions. This fact is a fundamental
obstruction to Kron reduction for general sheaves.

However, there is a sheaf Kron reduction for sheaves with vertex stalks of
dimension at most 1. This follows from the identification of the Laplacians of
such sheaves as the matrices of factor width two in §3.2.2.

Theorem 4.3 The class of matrices of factor width at most two is closed
under taking Schur complements.

Proof. By Theorems 8 and 9 of [BCPTO05], a matrix L has factor width at most
two if and only if it is symmetric and generalized weakly diagonally dominant
with nonnegative diagonal, that is, there exists a positive diagonal matrix D
such that DLD is weakly diagonally dominant. Equivalently, these are the
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symmetric positive semidefinite generalized weakly diagonally dominant ma-
trices. The class of generalized weakly diagonally dominant matrices coincides
with the class of H-matrices, which are shown to be closed under Schur com-
plements in [JS05|. Similarly, the class of symmetric positive definite matrices
is closed under Schur complements, so the intersection of the two classes is
also closed. O

4.3 Maximum Modulus Theorem

Harmonic 0-cochains of an O(n)-bundle satisfy a local averaging property
which leads directly to a maximum modulus principle.

Lemma 4.4 Let G be a graph with an O(n)-bundle F, with constant vertex
weights a, = 1 and arbitrary edge weights a. (as defined in §3.5). If © €
CY%(G; F) is harmonic at a vertex v, then

5 § w<16xw7

v,wde

v;éw

where d, = nge\\fvge“Q = nge az.

Proof. The block row of Lz corresponding to v has entries —F7 4 Fuge off
the diagonal and Y- .. Frg.Fuode = Yyl Fogell?idr@) on the diagonal.
The harmonicity condition is then

dvxv - § <]e]:w<16mw =0.
v,wde

v ;ﬁw
O

Theorem 4.5 (Maximum modulus principle) Let G be a graph, and B
be a thin subset of vertices of G; that is, G\ B is connected, and every vertex
in B is connected to a vertex not in B. Let F be an O(n)-bundle on G with
a, =1 for allv € G, and suppose x € C°(G; F) is harmonic on G\ B. Then
if x attains its maximum stalkwise norm at a vertex in G \ B, it has constant
stalkwise norm.

Proof. Note that for a given edge e = v ~ w, F,ge and F,g. are both a,
times an orthogonal map, so Fy g, Fuge 18 a? times an orthogonal map. Let
v € G\ B and suppose ||z, || > || || for all w € G. Then this holds in particular
for neighbors of v, so that we have

2ol = 7“ Z vde FugeTwl| < - Z [ ve FugeTul|

v,wde v,wde
v;ﬁw U;féw
d Y alllall < *Zofllwvll = [lzo]l,
v,wde vﬂe

v;éw
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Equality holds throughout, which, combined with the assumption that ||z, || >
|z for all w, forces ||z,| = ||zw| for w ~ v. We then apply the same
argument to every vertex in G'\ B adjacent to v, and, after iterating, the region
of constant stalkwise norm extends to all of G \ B because this subgraph is
connected. But since every vertex b € B is adjacent to some vertex w € G\ B,

the same argument applied to the neighborhood of w forces ||zp| = ||zwl-
So any harmonic function that attains its maximum modulus on G \ B has
constant modulus. O

Corollary 4.6 Let B be a thin subset of vertices of G, and F an O(n)-bundle
on G as before. If x € C°(G;F) is harmonic on G\ B, then it attains its
mazimum modulus on B.

The constant sheaf on a graph is an O(n)-bundle, so this result gives a
maximum modulus principle for harmonic functions on the vertices of a graph.
A slightly stronger result in this vein, involving maxima and minima of x, is
discussed in [Sun08]. The thinness condition for B is not strictly necessary
for the corollary to hold — there are a number of potential weakenings of the
condition. For instance, we might simply require that there exists some w € B
such that for every vertex v € G'\ B there exists a path from v to w not passing
through B.

5 Spectra of Sheaf Laplacians

The results in this section are straightforward generalizations and extensions of
familiar results from spectral graph theory. Most are not particularly difficult,
but they illustrate the potential for lifting nontrivial notions from graphs and
complexes to sheaves.

It is useful to note a few basic facts about the spectra of Laplacians arising
from Hodge theory.

Proposition 5.1 The nonzero spectrum of AF is the disjoint union of the
nonzero spectra of Aﬁ and AF .

Proof. We take advantage of the Hodge decomposition, noting that C*(X; F) =
ker A @im AF @im Aﬁ. This is an orthogonal decomposition, and = 0 as well
as A’j|( y = 0. Further, since ker AF = ker Ay Nker A_, both restrict to
zero on the kernel of A*. We therefore see that AF is the orthogonal direct
sum 0yer ax @ Ai|(im aky ® A’i|(imAk;), and hence the spectrum of A* is the

im A}jr

union of the spectra of these three operators. O
Proposition 5.2 The nonzero eigenvalues of Aﬁ and A*Y are the same.

Proof. We have A% = (6¥)*§% and A*T! = §¥(5%)*. The eigendecompositions
of these matrices are determined by the singular value decomposition of 8%,
and the nonzero eigenvalues are precisely the squares of the nonzero singular

values of &%,
O
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One reason for the study of the normalized graph Laplacian is that its
spectrum is bounded above by 2 [Chu92], and hence normalized Laplacian
spectra of different graphs can be easily compared. A similar result holds for
up-Laplacians of normalized simplicial complexes [HJ13]: the eigenvalues of the
degree-k up-Laplacian of a normalized simplicial complex are bounded above
by k + 2. This fact extends to normalized sheaves on simplicial complexes.
This result and others in this paper will rely on the Courant-Fischer theorem,
which we state here for reference.

Definition 5.3 Let A be a self-adjoint operator on a Hilbert space V. If z € V,
the Rayleigh quotient corresponding to x and A is
(z, Az)

RA(JJ)Z <$,£C> .

Theorem 5.4 (Courant-Fischer) Let A be an n xn Hermitian matriz with
eigenvalues Ay < Ay < --- < \,. Then

A = min max Ra(z) = max min Ra(x).
dim V=k z€V ( ) dim V=n—k+1zcV ( )

The proof is immediate once one uses the fact that A is unitarily equivalent
to a diagonal matrix.

Proposition 5.5 Suppose F is a normalized sheaf on a simplicial complex X .
The eigenvalues of the degree k up-Laplacian Lﬁ- are bounded above by k + 2.

Proof. By the Courant-Fischer theorem, the largest eigenvalue of L’}_— is equal
to
k k.. sk
ax (x, Lx) ~ ax (0%, 6% x)
z€Ck(X;F) <1'7I> xLker 6% Z <5k$0,5k5€0>
dim o=k
S o Tlo) T Fogrto, Forgr®or)

dim 7=k+1 0,0’ 7T
= max

x Lker 6 Z E <]:U§1‘rx0’]:0§]7'x0>

dim o=k o7

Note that for o # o’,
[o:7] [U/ LT FoqrTor Forgror) < | FogrZolll| ForgrTor||
1
< ) (||fa<1rffa||2 + HJ:U’QT"TG’HQ)

by the Cauchy-Schwarz inequality. In particular, then, the term of the numer-
ator corresponding to each 7 of dimension k + 1 is bounded above by

1
S FoarzolPts Y. (IFoareal + 1 Forarzor|?) = (k+2) Y[ Foraol,
odr o#o’'dT odr
by counting the number of times each term || F, g,z appears in the sum.

Meanwhile, the denominator is equal to Z Z | Foarto||?, so the Rayleigh
dim r=k+1 o7
quotient is bounded above by k + 2. O
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5.1 Eigenvalue Interlacing

Definition 5.6 Let A, B be n X n matrices with real spectra. Let A\ < Ao <

- < Ap be the eigenvalues of A and p; < po < -+ < u, be the eigenvalues
of B. We say the eigenvalues of A are (p, q)-interlaced with the eigenvalues of
B if for all k, Ak—p < pg < Apgq- (Welet A\, = A for k < 1 and Ay = A, for
k>n.)

The eigenvalues of low-rank perturbations of symmetric positive semidefi-
nite matrices are related by interlacing. The following is a standard result:

Theorem 5.7 Let A and B be positive semidefinite matrices, with rank B = t.
Then the eigenvalues of A are (t,0)-interlaced with the eigenvalues of A — B.

Proof. Let pi be the k-th largest eigenvalue of A — B and Ay the k-th largest
eigenvalue of A. By the Courant-Fischer theorem, we have

. < (y, Ay) — <vay>>
'[,Lk = min max
dim Y=k \y€Y,y#0 <ya y)

A
> min < <y, y>)
dim Y=k \yeYnker B y;ﬁO y

e

>  min
dimY=k— yGY y;ﬁO

N (y, Ay)
L, = min max
dim Y=k \y€Y,y#0 (y,y)

Ay) — B
> min <max {, Ay) = 1, y)) = M-
dim Y=k \yEY.y70 (y,y)

and

O

This result is immediately applicable to the spectra of sheaf Laplacians
under the deletion of cells from their underlying complexes. The key part is
the interpretation of the difference of the two Laplacians as the Laplacian of
a third sheaf.? Let F be a sheaf on X, and let C' be an upward-closed set of
cells of X, with Y = X\ C. The inclusion map i : ¥ — X induces a restriction
of F onto Y, the pullback sheaf i*F. Consider the Hodge Laplacians A’}E and
AF, . If C contains cells of dimension k, these matrices are different sizes, but
we can derive a relationship by padding Af* # with zeroes. Equivalently, this
is the degree-k Laplacian of F with the restriction maps incident to cells in C
set to zero.

Proposition 5.8 Let G be the sheaf on X with the same stalks as F but with
all restriction maps between cells not in C' set to zero. The eigenvalues of Ai-i}-
are (t,0)-interlaced with the eigenvalues of A%, where t = codim H*(X;G) =
dim C*¥(X; F) — dim H*(X;G).

2 Such subtle moves are part and parcel of a sheaf-theoretic perspective.
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Similar results can be derived for the up- and down-Laplacians. Special-
izing to graphs, interlacing is also possible for the normalized degree 0 sheaf
Laplacian. The Rayleigh quotient for the normalized Laplacian L£;«x is

—1/2 —1/2
(@, D Li-xD0)  (y,Liry)  (y,Lry) — (y, Lay)

(z, ) (y, Di-ry)  (y,Dry) — (y, Dgy)’

where we let y = D;lfmx. Then if {\;} are the ordered eigenvalues of Lz and

{pr} are the ordered eigenvalues of L;+x, we have

e = min ( e <y,Lfy>—<y,Lgy>)
dimY =k \yeY,y#0 (y, Dry) — (y, Dgy)
S, ( (y, Lry) )
> min max
dim Y=k \yeYNHO(X;G),y7#0 (y, Dry) — (y, Dgy)

(v, Lry) )

>  min max
dimY=k \yeYNH(X;6),y20 (y, Dry)

L
>  min ( max <y7}_y>) = Ag—t

T dimY=k—t \yeY,y#0 (y, Dry)

_ . {y,Lry) — (y, Lgy)
Ui = max min
dimY=n—k+1 \yeY,y#0 (y, Dry) — (y, Dgy)

_ . (v, Lry)
< max min
dim Y=n—k+1 \yeYNHO(X;G),y#0 (y, Dry) — (y, Dgy)

< (y, Lry)
< max —
dim Y =n—k+1 \y€YNHO(X:G),y#0 (y, DFy)

(v, Lry)\ _
max min ==t ) = Agpy
dimY=n—k—t+1 \yeY,y#0 (y, Dry)

<

Therefore, the eigenvalues of the normalized Laplacians are (¢,t)-interlaced.
This generalizes interlacing results for normalized graph Laplacians.

5.2 Sheaf Morphisms

Proposition 5.9 Suppose ¢ : F — G is a morphism of weighted sheaves on
a reqular cell complex X . If "+ is a unitary map, then L’}_— = (gpk)*ngak.

Proof. The commutativity condition *T1§% = §9¢* implies that (67)* (@F+1)*pF+167 =
(¥*F)*(69)* 89" = (*)*Lge*. Thus if (p*+1)* @ = idgrir(x,7), We have
L% = (p*)* L. This condition holds if ¢* T is unitary. O

An analogous result holds for the down-Laplacians of F, and these combine
to a result for the full Hodge Laplacians.
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5.3 Cell Complex Morphisms

The following constructions are restricted to locally injective cellular mor-
phisms, as discussed in §2.1. Recall that under these morphisms, cells map to
cells of the same dimension and the preimage of the star of a cell is a disjoint
union of subcomplexes, on each of which the map acts injectively. The sheaf
Laplacian is invariant with respect to pushforwards over such maps:

Proposition 5.10 Let X and Y be cell complexes, and let f : X =Y be a
locally injective cellular morphism. If F is a sheaf on X, the kth coboundary
Laplacian corresponding to fF on'Y is the same (up to a unitary change of
basis) as the kth coboundary Laplacian of F on X.

Corollary 5.11 The sheaves F and f.F are isospectral for the coboundary
Laplacian.

Proof. There is a canonical isometry f, : C*(X,F) — C*(Y, f.F), which is
given on stalks by the obvious inclusion f, : (o) = f.F(f(0)) = @ p(ry= (o) F(7)-
For o<o’, f, commutes with the restriction map F,q, and hence f; com-
mutes with the coboundary map. But this implies that:

1% 5 = (65,52 0% 5 = (05,50 e fuen 05, = 17 (05) 0% fi = i s fi
O

General locally injective maps behave nicely with sheaf pushforwards, and
covering maps behave well with sheaf pullbacks. Recall that a covering map
of cell complexes is a locally injective map f : C' — X such that for every cell
o € X, f is an isomorphism on the disjoint components of f~!(st(c)).

Proposition 5.12 Let f: C — X be a covering map of cell complezes, with
F a sheaf on X. Then for any k, the spectrum of L§- is contained in the
spectrum of L’}*}-.

Proof. Consider the lifting map ¢ : C*(X; F) — C*¥(C; f*F) given by x
2 o fi. This map commutes with § and §*. The commutativity with § follows
immediately from the proof of the contravariant functoriality of cochains. The
commutativity with §* is more subtle, and relies on the fact that f is a covering
map.

For y € C*(C; f*F) and x € C**1(X; F), we have

(y,0%ex) = (6y, p2) = Y 0" TN Forar (Yor), () 7)
O'/,T/EPC
o' 7’

= Z [0 : 7] Z (Fogr(Yor), T7)

o,TEPx a'ef=1(o)
odT

= Z [0 T/(Foar (@ Y)e,xr)

o, T€Px
odT

= (6p"y,x) = (y, pd"z).
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Now, if L%z = Az, we have L’}*fgox = (5}“*;)*5’;*}-(,% = p(6h) ke =
oLhx = Apz, so A is an eigenvalue of L’;*]_-. O

Even if f : Y — X is not quite a covering map, it is still possible to get
some information about the spectrum of f*F. For instance, for dimension-
preserving cell maps with uniform fiber size we have a bound on the smallest
nontrivial eigenvalue of the pullback:

Proposition 5.13 Suppose f : Y — X is a dimension-preserving map of
regular cell complezes such that for dim(o) = d, |f’1(a)| = lq is constant,
and let F be a sheaf on X. If A\ (F) is the smallest nontrivial eigenvalue of
LL, then M\ (F) > 72\, (f*F).

= Lg41

Proof. Let z be an eigenvector corresponding to Ax(F). Note that since every
fiber is the same size, the lift ¢ preserves the inner product up to a scaling.
That is, if y and z are d-cochains, (py, pz) = £4(y, z). This means that the
pullback of z is orthogonal to the pullback of any cochain in the kernel of Lx.
Therefore, we have

(6z,0z) _ Lafpdz, pdx) _ La(dpx,dpz) _ La
= = 2
(,x)  Aapi{pz,x)  Lap1(pm,0z) — Loy

Ae(F) = Ak(f7F).

5.4 Product Complexes

If X and Y are cell complexes, their product X xY is a cell complex with cells
ox7foroe X, eV, and incidence relations (o x 7)<(¢’ x 7') whenever
oo’ and 7<7’. The dimension of o x 7 is dim(o) + dim(7). The complex
X x Y possesses projection maps mx and 7y onto X and Y.

Definition 5.14 If 7 and G are sheaves on X and Y, respectively, their prod-
uct is the sheaf FX G = 75 F ® 7}-G. Equivalently, we have (FXG)(o x 7) =
}—(0) ® f(T) and (‘7:|Z g)JXTSIJ/XT’ = ]:aglcr’ ® gfrglfr“

Proposition 5.15 If Lx and Lg are the degree-0 Laplacians of F and G, the
degree-0 Laplacian of F X G is Lrrg = idco(x,7) ®Lg + LF ® idgo(y.g)-
Proof. The vector space C1(X x Y; F X G) has a natural decomposition into
two subspaces: one generated by stalks of the form F(v) ® G(e) for v a vertex

of X and e an edge of Y, and another generated by stalks of the opposite form
F(e) ® G(v). This induces an isomorphism

CHX X Y;FRG) = (CO(X; F) © CH(Y:6)) @ (CH(X; F) @ C°(Y;G)).
Then the coboundary map of F X G can be written as the block matrix
Srag = |:idcl)(?(;]:) ®5g} '
0F ®ideoy;g)

A quick computation then gives Lrmg = 0rgpgdrmg = idoo(x,r) ®I5og +
5;—5}‘ ® idco(y;g) = idCO(X;]:) RLg+Lr® idCO(y;g).
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Corollary 5.16 If the spectrum of Lx is {u;}:; and the spectrum of Lg is
{A;};, then the spectrum of Lrmg is {pi + Aj}ij-

For higher degree Laplacians, this relationship becomes more complicated.
For instance, the degree-1 up-Laplacian is computed as follows:

idco(x,7) ©0g 0
Ormg = |0 ®idor(yig) iderx i) @05
0 5}_— (39 idCO(Y;g)

I _ idco(x,7) ®Lé + Lg: ®ider(y;g) (59_—)* ® (58
FXG (59_— & ((58)* idCl(X;]:) ®L% + L‘17_- ® idco(y;g) ’

Because Ll}-xg is given by a block matrix in terms of various Laplacians and
coboundary maps of F and G, computing its spectrum is more involved. When
X and Y are graphs, this simplifies significantly and it is possible to compute
the spectrum in terms of the spectra of F and G.

Proposition 5.17 Suppose X and Y are graphs, with F and G sheaves on X
and Y. If vy is an eigenvector of Lg_- with etgenvalue \ and vg an eigenvec-

0, : \/XU]: ® 581)9 .
tor of Lg with eigenvalue p, then the vector vrrg = [ N s an
\/g(s}—v]: X vg
eigenvector of L}E@g with eigenvalue \ + .
Proof. A computation.
LY @idorvg) (03) @5 | [/ 2vr o
Lywgvrsg = [ ];0 ® (C;()(%’g) 'd( 7) ®gLo p 7GR
F g Weor(xr) Whg] |\ /B6%vr @ vg
A 0 0
_ (\/;+ \/§> AvF ®0gug | Ot ) \/§UF®6gvg
(/2 + VE) nokor 2 vg VE%0r @ vg
O

A simpler way to obtain nearly the same result is to recall from Proposi-
tion 5.2 that (8}gg) 0kgg and 0kgg(0Fgg)* have the same spectrum up to
the multiplicity of zero. But when X and Y are graphs,

8g (0rmg)” = (AL) 7 ®ider(vig) +ideor (x,7) ®(AL)g,

and since the nonzero eigenvalues of (Al )z are the same as those of Lg_-, we
obtain a correspondence between eigenvalues of Llf,gg and sums of eigenvalues
of L% and LY.

However, for higher-dimensional complexes and higher-degree Laplacians,
there appears to be no general simple formula giving the spectrum of F X G
in terms of the spectra of F and G. Indeed, we suspect that no such formula
can exist, i.e., that the spectrum of FX G is not in general determined by the
spectra of F and G.
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6 Effective Resistance

Effective resistance is most naturally defined for weighted cosheaves, but since
every weighted sheaf has a canonical dual weighted cosheaf, the following def-
inition applies to weighted sheaves as well.

Definition 6.1 Let F be a cosheaf on a cell complex X, and let a,b €
ker(9y )7 be homologous k-cycles. The effective resistance Reg(a,b) is given
by the solution to the optimization problem

. 2
min c s.t. Oxr1c=0b— a. 6.1
oming el st B (6.1

Proposition 6.2 Cosheaf effective resistance may be computed by the formula
Reg(a,b) = (b—a, (LE)T(b — a)), where L% is the up Laplacian 9410, ;.

Proof. By astandard result about matrix pseudoinverses, (L%)T = (8}; H)*@}; +1
so (b—a, (L5)1(b = a)) = (9], (b — ), 0, (b= a)) = [9],,(b - a)||* But
if b—a € im0Og41, then 8]];+1(b — a) is the minimizer of the optimization
problem (6.1). O

The condition that ¢ and b be homologous becomes trivial if Hy(X;F) = 0.
Note that if F is the constant cosheaf on a graph, a 0-cycle supported on a
vertex v is homologous to a 0O-cycle supported on a vertex w if their values
are the same. This means that the definition of cosheaf effective resistance
recovers the definition of graph effective resistance.

For any cosheaf on a cell complex, we can get a measure of effective resis-
tance over a (k + 1)-cell ¢ by using the boundary map restricted to o. Any
choice of ¢ € F(o) gives an equivalence class of pairs of homologous k-cycles
supported inside the boundary of o. That is, we can decompose Jc¢ into the
sum of two k-cycles in a number of equivalent ways. For instance, if o is a
1-simplex with two distinct incident vertices, there is a natural decomposition
of dc into a sum of two O-cycles, one supported on each vertex. This gives
a quadratic form on F(0): Reg(c)(x) = (83:,[/;6@. The choice of decom-
position does not affect the quadratic form. Of course, by the inner product
pairing, this quadratic form can be represented as a matrix ((9|]:(<,))*L;8|]:(0).
In particular, this defines a matrix-valued effective resistance over an edge for
a cosheaf on a graph.

6.1 Sparsification

Graph effective resistance has also attracted attention due to its use in graph
sparsification. The goal when sparsifying a graph G is to find a graph H
with fewer edges that closely preserves properties of G. One important prop-
erty we might wish to preserve is the size of boundaries of sets of vertices.
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If S is a set of vertices, we let |0S| be the sum of the weights of edges be-
tween S and its complement. We can compute this in terms of the Lapla-
cian of G: |0S| = 1LLg1g, where 1g is the indicator vector on the set S.
If H well approximates G in this sense, we would like to have a relation like
(1—6)1£LG13 < lgLng < (1+6)1£Lgl5 for every set S of vertices. Indeed,
we could strengthen this condition by requiring this to hold for all vectors in
C°(G;R), not just indicators of sets of vertices. The resulting relationship be-
tween the Laplacians of G and H is described by the Loewner order on positive
semidefinite matrices.

Definition 6.3 The Loewner order on the cone of symmetric positive definite
matrices of size n x n is given by the relation A < B if B — A is positive
semidefinite. Equivalently, A < B if and only if 27 Az < 27 Bz for all z € R™.

By the Courant-Fischer theorem, the relation A < B has important impli-
cations for the eigenvalues and eigenvectors of these matrices. In particular,
Amax(B) 2 Amax(A) and Apin(A) < Amin(B). If (1 —€)A X B < (1 +€)B, the
eigenvalues and eigenvectors of B are constrained to be close to those of A.
Thus, it is appropriate to call this relationship a spectral approximation of A
by B.

Spielman and Srivastava famously used effective resistances to construct
spectral sparsifiers of graphs [SS08]. This approach extends to sheaves on
graphs: just as graph Laplacians can be spectrally approximated by Lapla-
cians of sparse graphs, so too can sheaf Laplacians be spectrally approximated
by Laplacians of sheaves on sparse complexes.

Theorem 6.4 Let X be a reqular cell complex of dimension d and F a cosheaf
on X with dim Cy_1(X;F) = n. Given ¢ > 0 there exists a subcomplez X' C X
with the same (d—1)-skeleton and O(e~2nlogn) d-cells, together with a cosheaf
F'on X' such that (1 —e)LE " < L < (14 €)L&

Proof. 1f ker Lifl = 0, then an equivalent condition to the conclusion is
Amax(LE ) T2LENLE)72) S 14e

and ) 1
Amin(LEDT2LENLED)"2) > 1 — e

If ker Ldf_1 is nontrivial, we use the pseudoinverse of L-‘i-_l and restrict to the
orthogonal complement of the kernel. This only offers notational difficulties,
so in the following we will calculate as if the kernel were trivial.

Consider the restrictions of 9y to each d-cell o, and note that

S Oulo)@ul)” =15

dim(o)=d
For each d-cell o, we will choose ¢ to be in X’ with probability

po = min(1, 4e?log(n) tr(Reg(0))).
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If o is chosen to be in X, we choose its extension maps to be F/ 4, = \/%]:gg..

Let A, be independent Bernoulli random variables with E[A,] = p, and
let X, = p%Ag(Léfl)*%(adb)(aﬂ ) (LE 1)=2. Note that by construction
5, X = (T~ 1 (1) and

S = 0 i

We wish to show that the eigenvalues of > X, are close to those of its
expectation, for which we use a matrix Chernoff bound proven in [Tro12]. This
bound requires a bound on the norms of X,:

Nl

Il < () @ule) @ulo) (1)

< L (LEYE (94]) (Balo) (L))

o

1 tr(Re
< L@l (g1, = )
Do Po
We can a priori subdivide any X, with p, = 1 into sufficiently many

independent random variables so that their norms are as small as necessary.
This does not affect the hypotheses of the concentratlon inequality, so we
consider the case where p, < 1, where || X,|| < 4lggn Our matrix Chernoff
bound then gives

—4¢?

P {)\min((Ldffl)_%Li-Tl(Ld]_fl)_%) <1- e} < nexp ( €2 1ogn> =n!

2
¢ 2log n) =n /3

P [ (L) LA EE) ) 2 14 ] < e (=

When n is not trivially small there is therefore a high probability of Lz -
approximating Lr.
We now check the expected number of d-cells in X’. This is

Z Do < 4e2 logn Z tr(RefT(U))

and

Ztr (o Ztr (01)(ZED) T 0l) = S (L4 10,(0],)")

(Ld h Za (9]o) ):tr((Ldf—l)—lL;—l)gn.
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A standard Chernoff bound argument with the Bernoulli random variables
determining whether each cell is included then shows that the number of d-
cells is concentrated around its expectation and thus can be chosen to be
O(e2nlogn). O

The proof given here follows the outline of the proof for graphs given by
Spielman in [Spil5]. This newer proof simplifies the original proof in [SS08],
which used a sampling of edges with replacement. Theorem 6.4 generalizes
a number of theorems on sparsification of graphs and simplicial complexes
[ST11,CZ12,0PW17]; however, it is not the most general sparsification theo-
rem. Indeed, the core argument does not rely on the cell complex structure,
but only on the decomposition of the Laplacian into a sum of matrices, one
corresponding to each cell.

More general, and stronger, theorems about sparsifying sums of symmet-
ric positive semidefinite matrices have been proven, such as the following
from [SHS16]:

Theorem 6.5 (Silva et al. 2016)

Let By,...,B,, be symmetric, positive semidefinite matrices of size n X n
and arbitrary rank. Set B := ). B;. For any € € (0,1), there is a deterministic
algorithm to construct a vector y € R™ with O(n/€*) nonzero entries such that
Yy s nonnegative and

B = yB; = (1+¢€)B.
i=1

The algorithm runs in O(mn3/€?) time. Moreover, the result continues to hold
if the input matrices By, ..., B,, are Hermitian and positive semidefinite.

The sheaf theoretic perspective, though not the most general or powerful
possible, nevertheless maintains both a great deal of generality along with a
geometric interpretation of sparsification in terms of an effective resistance.
This geometric interpretation may then be pursued to develop efficient meth-
ods for approximating the effective resistance and hence fast algorithms for
sparsification of cell complexes and cellular sheaves atop them.

7 The Cheeger Inequality
7.1 The Cheeger Inequality for O(n)-bundles

Recall from §3.5 the notion of an O(n)-bundle on a graph. Bandeira, Singer,
and Spielman proved an analogue to the graph Cheeger inequality for O(n)-
bundles [BSS13]. Their goal was to give guarantees on the performance of a
spectral method for finding an approximate section to a principal O(n)-bundle
over a graph. For an O(n)-bundle on a graph with Laplacian L, degree matrix
D and normalized Laplacian £ = D~Y/2LD~1/2_ they defined the frustration
of a 0-cochain = to be
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() = (x, Lz) _ (:E,E:E>7

(x, Dx) (x,x)
and showed that any 0-cochain can be rounded to one with controlled frus-
tration as follows. Given a 0-cochain x and a threshold x > 0, let = be the
cochain whose value at a vertex v is z,/||x,]| if ||z.||*> > & and is zero oth-
erwise. For any such z there exists a x such that n(z*) < 1/10n(x). Taking
the minimum over all 0-cochains x then implies that if \;(£) is the smallest
eigenvalue of £,

A(L) < | ﬁnlln 077(1‘) < V10A(L). (7.1)
T,||=1 or

A natural question is whether this theorem extends to a more general class

of sheaves on graphs. One reasonable candidate for extension is the class of
sheaves on graphs where all restriction maps are partial isometries, ¢.e., maps
which are unitary on the orthogonal complement of their kernels. One might
view these as O(n)-bundles where the edge stalks have been reduced in di-
mension by an orthogonal projection. However, the cochain rounding approach
does not work for these sheaves, as the following simple counterexample shows.
Let G be a graph with two vertices and one edge, and let F(v1) = F(vq) = R?

1

and F(e) = R. Then let F,, g = [1 0] and F,qe = [5 @] Then let z,, = [8]

and x,, = [(1)
means that there cannot exist any function f : R — R with f(0) = 0 such
that n(@) < f(1(a)).

This example does not immediately show that the Cheeger inequality (7.1)
is false for this class of sheaves, since this sheaf does have a section of stalkwise
norm 1, but it does offer a counterexample to the key lemma in the proof.
Indeed, a more complicated family of counterexamples exists with sheaves
that have no global sections. These counterexamples show that an approach
based on variational principles and rounding is unlikely to prove an analogue
of the results of Bandeira et al. for more general classes of sheaves.

} Then n(z) = 0, but n(z*) > 0 for any choice of u < 1. This

7.2 Toward a Structural Cheeger Inequality

Many extensions of the graph Cheeger inequality view it from the perspective
of a constrained optimization problem over cochains. This is the origin of the
Cheeger inequality for O(n)-bundles, and of the higher-dimensional Cheeger
constants proposed by Gromov, Linial and Meshulam, and others [LMOG6,
Grol0,PRT16]. However, a sheaf gives us more structure to work with than
simply cochains.

The traditional Cheeger inequality for graphs is frequently stated as a
graph cutting problem: what is the optimal cut balancing the weight of edges
removed with the sizes of the resulting partition? If we take the constant sheaf
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on a graph G, we can represent a cut of G by setting some restriction maps to
0, or, more violently, setting the edge stalks on the cut to be zero-dimensional.
Thus, a potential analogue to the Cheeger constant for sheaves might be an
optimal perturbation to the structure of the sheaf balancing the size of the
perturbation with the size of the support of a new global section that the
perturbation induces.

For instance, we might measure the size of a perturbation of the sheaf’s
restriction maps in terms of the square of the Frobenius norm |||z of the
coboundary matrix. If we minimize |07 — 67 ||%, a natural relaxation to the
space of all matrices shows that this value is greater than A\ (Lx).

8 Toward Applications

The increase in abstraction and technical overhead implicit in lifting spectral
graph theory to cellular sheaves is nontrivial. However, given the utility of
spectral graph theory in so many areas, the generalization to sheaves would
appear to be a good investment. As this work is an initial survey of the land-
scape, we quickly sketch a collection of potential applications. These sketches
are brief enough to allow the curious to peruse, while providing experts with
enough to construct details as needed.

8.1 Distributed Consensus

Graph Laplacians and adjacency matrices play an important role in the study
and design of distributed dynamical systems. This begins with the observation
that the continuous-time dynamical system on a set of real variables {z,: v €
V(G)} indexed by the vertices of a graph G with Laplacian L,

T = —Lz,

is local with respect to the graph structure: the only terms that influence %, are
the z,, for w adjacent to v. Further, if the graph is connected, diagonalization
of L shows that the flow of this dynamical system converges to a consensus
— the average of the initial condition. A similar observation holds for sheaves
of finite-dimensional vector spaces on graphs:

Proposition 8.1 Let F be a sheaf on a cell complex X. The dynamical sys-
tem & = —A’}x has as its space of equilibria H*(X; F), the space of harmonic
k-cochains of F. The trajectory of this dynamical system initialized at xo con-
verges exponentially quickly to the orthogonal projection of xo onto H*(X; F).

Proof. This is a linear dynamical system with flows given by z(t) = e*m;xo.

Since A’} is self-adjoint, it has an orthogonal eigendecomposition A’}_— =VAV*,
so that flows are given by z(t) = Ve " V*zg =Y, e " (v;, 29)v;. The terms
of this sum for \; > 0 converge exponentially to zero, while the terms with \; =
0 remain constant, so that the limit as ¢ — 00 is 3=, cye(x,7){vi, Zo)v;. Since

the v; are orthonormal, this is an orthogonal projection onto H*(X; F). [
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In particular, for £ = 0, this result implies that a distributed system can
reach consensus on the nearest global section to an initial condition.

8.2 Flocking

One well-known example of consensus on a sheaf comes from flocking mod-
els [JLMO03,TJP03]. In a typical setting, a group of autonomous agents is
tasked with arranging themselves into a stable formation. As a part of this,
agents need a way to agree on a global frame of reference.

Suppose one has a collection of autonomous agents in R3, each of which has
its own internal coordinate system with respect to which it measures the out-
side world. Each agent communicates with its neighbors, communication being
encoded as a graph. Assume agents can calculate bearings to their neighbors
in their own coordinate frames. The agents wish to agree on a single direction
in a global, external frame, perhaps in order to travel in the same direction.
However, the transformations between local frames are not known.

To solve this, one constructs a sheaf on the neighborhood graph of these
agents. The vertices have as stalks R3, representing vectors in each agent’s
individual coordinate frame. The edges have stalks R', used to compare bear-
ings. Since the agents can measure the bearing to each neighbor, they can
project vectors in their coordinate frame onto this bearing. Let b(v,w) be
the unit vector in v’s frame pointing toward w. Then for the (oriented) edge
e = v ~ w, the restriction map F,q. : R* = R is given by (b(v,w), e), while
the restriction map Fyge is —(b(w,v),e). (The change of sign is necessary
because the bearing vectors are opposites in the global frame.) Any globally
consistent direction for the swarm will be a section of this sheaf, and with a
bit more information the agents can achieve consensus on a direction.

This is merely one simple example of a sheaf for building consensus via
Laplacian flow. The literature on flocking is quite involved, with various re-
finements and alternate scenarios, including, e.g., the case in which the network
communication graph changes over time.

8.3 Opinion Dynamics

Sheaf Laplacians provide a drop-in replacement for graph Laplacians when
one wishes to constrain a distributed algorithm to a locally definable subspace
of the global state space. For example, the flocking application in the previ-
ous example generalizes greatly to the setting of opinion dynamics on social
networks.

Consider the setting of a collection of agents, each of whom has an R-
valued opinion on some matter (say, a measure of agreement or disagreement
with a particular proposition). A social network among agents, modeled as a
weighted graph, permits influence of opinions based on Laplacian dynamics:
each member of the network continuously adjusts their opinion to be more
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similar to the average of their neighbors’ opinions, either in continuous or
discrete time.

The literature on opinion dynamics begins with this simple setting [HD74,
Leh75], and quickly grows to include a number of generalizations of graph
Laplacians when there are multiple opinions or other features [YTLT18,PB10,
PS14]. Our perspective is that lifting the simple model to a sheaf automati-
cally incorporates various novel features while maintaining the simplicity of a
Laplacian flow.

The first obvious generalization is that multiple opinions reside in higher-
dimensional stalks. Each agent p has a vector space F(p) of opinions on some
set of topics. These vector spaces need not have the same dimension across the
network — there is no need to assume that every member of the network has
an opinion on every topic. Between each pair (p, ¢) of participants adjacent in
the social network, there is an edge e with a stalk F(e), which we might label
a discourse space. Opinions in F(p) and F(q) are translated into the discourse
space by the restriction maps Fpqe and Foge.

The flexibility of a sheaf permits a wonderful array of novel features. For
instance, each pair of participants in the social network might only communi-
cate about a handful of topics, and hence only influence each others’ opinions
along certain directions. Other topics would therefore lie in the kernels of the
restriction map to their shared discourse space.

Some features which appear difficult to model in the classical literature on
opinion dynamics are easily programmed into a sheaf: what happens if certain
agents lie about their opinion, and then only to certain individuals on cer-
tain topics? Is a “public” consensus (with privately-held or context-dependent
personal opinions) still possible? This demonstrates the utility of sheaves not
merely in having stalks which vary, but with varying and interesting restriction
maps as well.

8.4 Distributed Optimization

Laplacian dynamics are useful not only for mere consensus, but also as a way
to implement consistency constraints for other sorts of distributed algorithms.
Particularly important among these are distributed optimization algorithms,
where a network optimizes a sum of objective functions distributed across the
nodes, with the Laplacian dynamics enforcing the constraint that local state
be consistent across nodes.

Fix a sheaf of finite-dimensional vector spaces over a graph G. For each
node, v € V(G), assume a cost function, say, a convex functional ¢, from
the stalk of v to R. The problem of finding a global section = (z,,) which
minimizes Y, ¢, (z,) subject to the constraint that x € H°(G;F) is a rela-
tively unexplored class of optimization problems. Such problems are naturally
distributed in nature, as the constraint (given in terms of the coboundary
operator) is locally defined.
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More generally, one can consider distributed optimization with homologi-
cal constraints on any cellular sheaf of vector spaces over a cell complex X. If
the problem to be solved is the optimization of an objective function defined
on C*(X; F) subject to the constraint that the optimum lie in #*(X; F), then
this is naturally distributed. One might call such problems homological pro-
grams, analogous to the manner in which linear constraints give rise to linear
programs. The Laplacian evolution then plays a role in providing distributed
algorithms to solve such optimization problems.

8.5 Communication Compression

Both discrete-time as well as continuous-time Laplacian evolution is useful.
Consider the following modification of the consensus problems previously dis-
cussed. Suppose one has a distributed system modeled by a graph G, where
each node of G has state in R” for some large D and the nodes are required
to reach consensus. The Laplacian flow on states may be discretized as

[t +1] = (I — al)zlt]. (8.1)

To implement this discrete-time evolution equation, at each time step, a node
v must send its state z,[t] € RP to each of its neighbors, the cost of doing so
scaling with state size D. It may be preferable instead to have each node send a
lower-dimensional compression of its state to each neighbor, i.e., a projection
P.z,[t] onto a d < D-dimensional subspace, with the subspace depending on
the edge e.

As with the continuous-time evolution, equilibria of (8.1) correspond to
global sections of the sheaf. However, changing the stalks over edges and the
corresponding restriction maps changes the sheaf and therefore, potentially, its
global sections. The goal for reducing the communication complexity is there-
fore to program this compressed sheaf so as to preserve the zeroth cohomology
HP. Such a sheaf would comprise a certain approzimation of the constant sheaf
over the graph.

8.6 Sheaf Approximation

A sheaf of vector spaces can be thought of as a distributed system of linear
transformations, and its cohomology H*® consists of equivalence classes of so-
lutions to systems based on these constraints. From this perspective, questions
of approximation — of sheaves and sheaf cohomology — take on especial rel-
evance. The question of approximating global sections to a given sheaf has
appeared in, e.g., Robinson [Rob17,Rob1§].

Questions of approximating sheaves are equally interesting. Given the rel-
ative lack of investigation, the following definition is perhaps premature; nev-
ertheless, it is well-motivated by problems of distributed consensus and by
cognate notions of cellular approximation in algebraic topology.
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Definition 8.2 Let X be a regular cell complex, and let G be a sheaf on X.
We say that a sheaf F on X is a k-approzimation to G if there exists a sheaf
morphism a : G — F which is an isomorphism on stalks over cells of degree
at most k, and which induces an isomorphism H(X;G) — H*(X;F) for all
1 < k.

If V is a vector space, we denote the constant sheaf with stalk V by V, and
say that F is an approzimation to the constant sheaf if F is an approximation
to V.

This definition is reminiscent of cellular approximation methods from al-
gebraic topology. A space X may be k-approximated by a cell complex Y,
via a morphism Y — X inducing an isomorphism on homotopy groups up to
degree k. Here we approximate a sheaf on a cell complex by one with the same
cohomology in degrees up to k. In particular, a 0-approximation to F has the
same vertex stalks and the same space of global sections as F.

Proposition 8.3 If F is a 0-approximation to V, then it is isomorphic to a
sheaf with vertex stalks V where for each edge e joining vertices v and w, the
restriction maps Fyge : V — F(e) and Fyge : V — Fle) are equal.

Proof. Note that because a : V — F is an isomorphism on vertex stalks, F is
clearly isomorphic to a sheaf with vertex stalks V. For every edge e = (v, w)

we have the diagram

v 4 vy

idl J{fv@e

|\ F(e)
idT Fuge ’
1

v 4 ,v

and the only way it can commute is if Fyge = Fuge = Ge- O]

The proof of this proposition shows that specifying an approximation to
V is the same as specifying a morphism a. : V — F(e) for each edge e of G.
Further, in order to produce an approximation to V, the a. must assemble to
amap a: C'(G;Y) = CYG; F) = @.cp Fle) such that ker(a o dy) = ker dy.
This holds if kera is contained in a complement to imJ; equivalently, the
projection map 7 : C'(G;V) — H'(G;V) must be an isomorphism when
restricted to kera.

This suggests a way to construct an approximation to the constant sheaf.
Choose a subspace K, of V(e) for each edge e of G and define a. to be the pro-
jection map V — V/K.. If @, K. has the same dimension in H'(G;V) as in
CY(G;V), then a = @D.cp ae defines the edge maps giving an approximation
to V. (The vertex maps may be taken to be the identity.)

The question of when a collection { K.} produces an approximation to the
constant sheaf appears quite subtle, and will be the subject of future work.
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This description of approximations to the constant sheaf has ignored the
question of weights — that is, what inner products to put on the quotient
spaces V/K, — which will be crucial to the spectral behavior of their Lapla-
cians and hence to the performance of distributed consensus algorithms based
thereon.

To understand this relationship, consider again the discretization of the
Laplacian flow z[t+1] = (I —aLx)z[t]. The matrix (I —aL ) has an eigenvalue
of 1 with eigenspace equal to H°(G; F), with all other eigenvalues less than 1.
The optimal convergence rate for this consensus algorithm is obtained at an
« keeping the nontrivial eigenvalues as close to zero as possible. If A\« is the
largest eigenvalue of L and Ay the smallest nontrivial eigenvalue of Lz, this
is obtained at a = ﬁ, for a nontrivial spectral radius of r = %
The number of steps necessary to reach a level of disagreement of € is thus
proportional to l(l)ogg(:). On a k-regular graph with d-dimensional edge stalks,
the total amount of communication each node must undertake at each step is
proportional to kd. Thus the total communication cost per node is proportional

log D ; log
to kd 10;(:). For the constant sheaf R”, the total cost per node is leo‘;( 1;)7

— Amax(G)=Amin(G) : :
where R = T () =i (G 18 the corresponding spectral radius for consensus

over Lgp. If

dlog(R)

Dlog(r) ’

the total communication cost for consensus using the approximation to the
constant sheaf will be lower than that for the constant sheaf. Preliminary in-
vestigation suggests it may be possible to construct approximations to the con-
stant sheaf that achieve this threshold, but more work is necessary to develop
methods for creating spectrally advantageous approximations to the constant
sheaf. These could then be marshaled to improve the speed and efficiency of
distributed algorithms that involve consensus, such as distributed optimiza-
tion.

8.7 Synchronization

The concept of synchronization in the context of problems with data on graphs
is exemplified in work by Singer on the angular alignment problem [Sinll].
The concept was developed further by Bandeira in his dissertation [Banl5].
The general idea is to recover information about some set of parameters from
knowledge of their pairwise relationships. The general formulation, due to
Bandeira, is as follows: Given a group G, a graph X, and a function f;; :
G — R for each edge i ~ j of X, find a function ¢ : V(X) — G minimizing
i fig(9(1)g(5) 7).

Often, the functions f;; are chosen such that they have a unique minimum
at a given element g;; € G. One may view this as originating from a G-principal
bundle on a graph, with the group elements g¢;; defining transition maps. The
desired solution is a section of the bundle, determined up to a self-action of G,
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but may not exist if there is error in the measured g;;. As a result, we seek an
error-minimizing solution, where the error is measured by the functions f;;.

Sheaves on graphs offer a broader formulation: synchronization is the prob-
lem of finding a global section, or approximate global section, of an observed
sheaf on a graph. By choosing sheaves valued in a suitable category, we can
recover the group-theoretic formulation. There is something of a gap between
the natural formulation of many synchronization problems and a sheaf valued
in vector spaces; bridging that gap for synchronization over O(d) is the goal
of [BSS13].

One of the initial motivating problems for the study of synchronization was
the cryo-electron microscopy alignment problem. The goal is to understand the
configuration of a molecule, represented by a density function on R3. Cryo-
electron microscopy allows one to measure projections of random rotations of
this function onto a fixed two-dimensional plane. One approach to recovery
involves inferring these unknown rotations from pairwise information. After
taking the Fourier transform of the measured two-dimensional distributions,
each pair of distributions will agree on a one-dimensional subspace, specifically,
the invariant axis for the rotation relating the two orientations of the molecule.

Suppose the i'" measurement is taken from the molecule in an orientation
pi € SO(3), so that the transformation between the orientation of measure-
ment ¢ and measurement j is p;; = p; p{l. If x is a vector in the base orientation
frame of the molecule, its representation in the frames for 7 and j are p;z and
pjx, respectively. These two vectors have the same projection onto the invari-
ant subspace of p;;. Since this invariant subspace is precisely the subspace on
which the relevant two projections agree, we can check whether two vectors
in the frames for measurements 7 and j agree by projecting them onto this
subspace.

A single constraint of this form does not ensure equality of vectors in the
different frames. However, sufficiently many generic such constraints will. Com-
bining all these pairwise constraints gives us a sheaf with the same form as
the sheaf of autonomous agents discussed in §8.2. Note that the pairwise data
here obtained is not in the form of invertible transformations, but weaker con-
straints. Thus, a major motivating problem for synchronization has a natural
expression in the language of cellular sheaves.

The explicitly sheaf-theoretic formulation of the synchronization problem
suggests a different solution approach. If a synchronization sheaf has a global
section — as is the case when the data are internally consistent and uncor-
rupted by noise — finding that section is trivial. The traditional approach
to synchronization takes these transition functions as they are, and seeks an
approximate section to the sheaf. On the other hand, we might try to denoise
the measured relationships themselves using the condition of cycle-consistency.
That is, given an observed sheaf, find the nearest sheaf supporting a global
section. A structural Cheeger inequality as discussed in §7.2 would give spec-
tral insights into this problem. Deeper understanding would come from study
of an appropriate moduli space of cellular sheaves, which is a direction for
future work.
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8.8 Consistent Clustering

As suggested by Gao et al. [GBM16], the data of a sheaf on a graph is useful for
more than recovering a global section. The problem of clustering objects where
the similarity measure comes from an explicit matching or transformation gives
extra information. If we stipulate that objects within a cluster should have
consistent transformations along cycles, the problem of clustering becomes
the problem of partitioning a graph into subgraphs, each of which supports
the appropriate space of global sections.

Similar ideas arise in [Gaol6], which considers correspondences between
surfaces produced using the soft Procrustes distance. These correspondences
are maps between probability distributions on the vertex sets of discretized
surfaces. When these surfaces are meshes with varying numbers of vertices,
these maps are not invertible, but by construction they are represented by
doubly stochastic matrices, and the analogue of the inverse for such a map
is simply the transpose of its corresponding matrix. These sorts of geometric
correspondences are natural to consider in the context of geometric morpho-
metrics, the field devoted to studying and classifying species based on their
geometric properties.

Gao constructs a matrix he calls the graph horizontal Laplacian, together
with normalized versions he uses to formulate a fiber bundle version of the
diffusion maps algorithm for dimensionality reduction. The graph horizontal
Laplacian is related to a map of graphs X — G, where the fibers over vertices
of G are discrete. A weighting on the edges of X induces a matrix-valued
weighting on the edges of G. This produces a weighted adjacency matrix W of
G, from which the graph horizontal Laplacian is generated by L = D — W,
where D is the diagonal matrix necessary to make L¥ have row sums equal
to zero.

This is in fact equivalent to the sheaf Laplacian of the pushforward of
the weighted constant sheaf on X, and as a consequence of Proposition 5.10,
is simply a block subdivision of the Laplacian of X. This sheaf on G can
then be normalized to construct a diffusion map embedding of the vertices of
G, as well as an embedding of the vertices of X. When applied to the surface
correspondence problem, the eigenvectors of the resulting sheaf Laplacian serve
to partition the surfaces into automatically determined landmarks or regions
of interest.

Approaching these notions of partitioning, partial sections, and noninvert-
ible matchings from a sheaf-theoretic perspective offers new tools and clarifies
the problems in question, with potential for the spectral approach to yield
insights.

9 Closing Questions

There are numerous interesting open questions in an emerging spectral sheaf
theory. We highlight a few below, with comments.
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9.1 Metrics on the Space of Cellular Sheaves

Interleaving-type constructions have been used to define metrics on the space
of constructible sheaves. However, these rely on explicit geometric information
about the sheaves and their underlying spaces. Working with weighted cellular
sheaves may make it possible to define useful distances that rely only on the
combinatorial and algebraic structure of the sheaves. What are the most useful
metrics on the space of sheaves? How do they interact with the sheaf Laplacians
and their spectra? How does this shed light on a moduli space of cellular
sheaves?

9.2 Developing a Cheeger Inequality

Following the discussion in §7.2, a structural Cheeger inequality for sheaves
is connected to questions of a potential moduli space of sheaves. Such an in-
equality would describe how the spectral properties of a sheaf interact with its
distance to the nearest sheaf with a nontrivial global section. Can a Cheeger in-
equality emerge from approximations to the constant sheaf, seeking 0-cochains
of small coboundary which are constant on large sets of vertices?

9.3 Interactions with the Derived Category

The standard way of understanding sheaf cohomology is through the derived
category of complexes of sheaves [GMO03]. We may replace a sheaf by an in-
jective resolution and take the cohomology of the complex of sheaves. What
is the relationship between a weighted sheaf and its injective resolutions, and
how do the resulting Laplacians connect with the Hodge Laplacian defined
on the cochain complex? What results can be proven about their spectra?
How do they interact with the standard sheaf operations? Is there a consistent
way to add weights to the derived category of sheaves? We should not expect
the answers to these questions to be unique due to the dagger categorical is-
sues discussed in §3.1, but there may be constructions which are nevertheless
appealing.

9.4 Random Walks

Chung and Zhao [CZ12] considered random walks on discrete O(n)-bundles,
including a definition of a sort of PageRank algorithm. Is it possible to define
random walks on more general sheaves of vector spaces, and to what extent
are such related to the sheaf Laplacian and its spectral features? Is there an
analogous PageRank algorithm for sheaves?



Toward a Spectral Theory of Cellular Sheaves 43

9.5 Cones and Directedness

How does one model directedness and asymmetric relations on sheaves? Sheaves
of cones and sheaf cohomology taking values in categories of cones have proven
useful in recent applications of sheaf theory to problems incorporating direct-
edness [GK17,KS18]. Such methods, though promising, may be noncommu-
tative, using semigroups or semimodules to encode the directedness, which,
in turn, pushes the boundaries of existing methods in sheaf theory and non-
abelian sheaf cohomology.
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