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Abstract

A matrix-weighted graph is an undirected graph with a k × k positive semidefinite

matrix assigned to each edge. There are natural generalizations of the Laplacian and

adjacency matrices for such graphs, leading to a generalized notion of expansion. Ex-

tensions of some theorems about expansion hold for matrix-weighted graphs—in par-

ticular, an analogue of the expander mixing lemma and one half of a Cheeger-type

inequality. These results lead to a definition of a matrix-weighted expander graph, and

suggest the tantalizing possibility of families of matrix-weighted graphs with better-

than-Ramanujan expansion.
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1. Introduction

A recent thread of investigation in spectral graph theory has been the extension

of graph-theoretic concepts to to higher dimensions. This extension may take place

by raising the dimensionality of the underlying structure, as with the spectral theory

for simplicial complexes and hypergraphs [1, 2, 3, 4]. However, it is also possible

to raise the dimension of the algebraic components of interest: rather than consider

R-valued functions on the vertices of a graph, consider functions valued in higher-
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dimensional spaces. This extension allows us to define new classes of graph operators.

The most famous of these is perhaps the graph connection Laplacian, which introduces

a weighted orthogonal transformation corresponding to each edge. This has been used

for dimensionality reduction and data analysis [5, 6], and various theoretical results

including a Cheeger-type inequality [7], sparsification algorithms [8, 9], and results on

the spectrum of random connection Laplacians [10].

A somewhat less well known higher-dimensional generalization is the matrix-weighted

graph. Rather than assign an orthogonal matrix to each edge, a matrix-weighted graph

assigns a positive semidefinite matrix to each edge. Matrix-weighted Laplacians in

particular have seen development and use in the design and control of engineering sys-

tems [11, 12, 13].

Both connection graphs and matrix-weighted graphs are special cases of cellu-

lar sheaves [14]. These are algebraic structures attached to a graph (or a higher-

dimensional combinatorial space) that describe consistency constraints for data param-

eterized by the graph. Graph connection Laplacians and matrix-weighted Laplacians

are instances of sheaf Laplacians [15]. The cellular sheaf perspective can shed light on

various phenomena arising in these more restricted domains.

This paper focuses on understanding the expansion properties of matrix-weighted

graphs. Of the higher-dimensional extensions of graphs, these have the behavior most

similar to that of the usual scalar-weighted graphs. (For instance, it is not even entirely

clear what an appropriate definition of expansion is for connection graphs or other types

of cellular sheaves.) Still, there are a number of subtle differences that add additional

richness and interest to the theory in the matrix-weighted case.

We will first define matrix-weighted graphs and their paraphernalia—degrees, Lapla-

cians, adjacency matrices, etc., as a generalization of standard objects from graph the-

ory. We then introduce cellular sheaves and describe how matrix-weighted graphs are

realized as sheaves. After a few examples, we explore the relationship between the

spectra of matrix-weighted graphs and certain associated scalar-weighted graphs. We

then prove a version of the expander mixing lemma for matrix-weighted graphs, as

well as one half of a Cheeger inequality for regular matrix-weighted graphs, and show

that the complementary inequality cannot hold. Finally, we propose a definition of a
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matrix-weighted expander graph and discuss its implications.

2. Matrix-Weighted Graphs

2.1. Definitions

We will view a weighted graph as a structure built on top of an underlying un-

weighted, undirected graph. Let G be a graph with vertex set V and edge set E. We

will write v P e for the vertex-edge incidence relation; that is, v P e if v is one of the

endpoints of the edge e. A weighting on G is a function w : E → R, whose values we

write we for e ∈ E, such that we ≥ 0. For an edge e = u ∼ v, we write wuv = we = wvu,

and we can extend this by letting wuv = 0 whenever there is no edge between u and

v. One may represent a weighted graph by its adjacency matrix A, whose rows and

columns are indexed by V , which has Auv = wuv. The weighted degree of a vertex v is

dv =
∑

v P e we =
∑

u∈V wuv. The adjacency matrix determines and is determined by the

weighted Laplacian matrix L = D − A, where D is the diagonal matrix whose entries

are the weighted degrees.

Matrix-weighted graphs are a generalization of this structure. Rather than assigning

a nonnegative scalar we to each edge, we assign a k× k symmetric positive semidefinite

matrix We. We can equivalently specify this as a symmetric function on pairs of vertices

as before, letting Wuv = We for e = u ∼ v and Wuv = 0 if there is no edge between u and

v. A matrix-weighted graph may again be represented by its adjacency matrix. This

is a block matrix with k × k blocks, whose block rows and columns are indexed by V ,

and where Auv = Wuv. There is also a corresponding matrix-weighted Laplacian matrix

L = D − A, defined blockwise analogously to the scalar-weighted version, with the

degree matrix D having blocks on the diagonal equal to the block row (or column) sums

of A. These matrices are interesting as generalizations of the constructions familiar

from spectral graph theory.

We think of the matrix-weighted versions of the adjacency and Laplacian matrices

as linear operators on the space of functions V → Rk. That is, these operators take as

input an assignment of a vector in Rk to each vertex of G and output an assignment of

the same form. The action of a general matrix-weighted adjacency matrix or Laplacian
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on (Rk)V may be written vertexwise as

(Ax)v =
∑
u∈V

Wuvxu (1)

(Lx)v =
∑
u∈V

Wuv(xv − xu), (2)

where we note that this is an expression relating vectors in Rk. From this expression, it

is easy to see that the kernel of L is at least k-dimensional, for it contains all constant

functions V → Rk. If G is not connected, the kernel of L contains a direct summand of

dimension k corresponding to each connected component of G. However, even if G is

connected, the kernel of L may be more than k-dimensional. The matrix L is positive

semidefinite, as will be easy to see by considerations in Section 2.2. Therefore, if we

write its eigenvalues in increasing order, we have 0 = λ1 = · · · = λk ≤ λk+1 ≤ · · · .

We will say that a matrix-weighted graph is regular if the vertexwise degree matrix

Dv =
∑

u∈V Wuv is the same for every vertex v. When necessary to avoid confusion, we

will call Dv the algebraic degree, and the degree of the vertex in the underlying graph

the topological degree. The “most regular” matrix-weighted graphs have algebraic

degree equal to dI for some d ∈ R; by an abuse of notation we will call these d-regular

matrix-weighted graphs. The adjacency and Laplacian spectra of a d-regular matrix

weighted graph have related eigenvalues: since the total degree matrix D is equal to dI,

the eigenvalues of A are µi = d − λi.

Just as with weighted graphs, it is often useful to normalize the Laplacian and

adjacency matrices of matrix-weighted graphs. Since the degree matrices are posi-

tive semidefinite, they have square roots; we define the normalized Laplacian to be

L̃ = D†/2LD†/2, where D†/2 is the Moore-Penrose pseudoinverse of the square root

of the degree matrix. We likewise define the normalized adjacency matrix to be Ã =

D†/2AD†/2 = I − L̃. If D is invertible, the block diagonal entries of L̃ are copies of

the k × k identity matrix. However, the off-diagonal block entries are not in general

symmetric.

The scalar normalized Laplacian is useful in part because its spectrum is bounded

above by a constant regardless of the size or degree distribution of the graph. The same

holds for the matrix-weighted normalized Laplacian.
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Proposition 2.1. The eigenvalues of the normalized Laplacian of a matrix-weighted

graph are bounded above by 2.

Proof. By the Courant-Fischer theorem, the largest eigenvalue of L̃ is

λ̃max = max
x

〈x,D†/2LD†/2x〉
〈x, x〉

.

Since any x ∈ ker D is also in ker L and hence is orthogonal to any eigenvector for λ̃max,

we can restrict the domain of the maximization to get

λ̃max = max
x⊥ker D

〈x,D†/2LD†/2x〉
〈x, x〉

= max
y⊥ker D

〈y, Ly〉
〈y,Dy〉

= max
y⊥ker D

∑
u,v P e〈yu − yv,We(yu − yv)〉∑

v
∑

v P e〈yv,Weyv〉

≤ max
y⊥ker D

2
∑

u,v P e〈yu,Weyu〉 + 〈yv,Weyv〉∑
v
∑

v P e〈yv,Wexv〉
= 2.

The bound is achieved when there exists a vector y such that 〈y, Ly〉 = 2〈y,Dy〉. As

in the standard case, this occurs when the underlying graph is bipartite; in this case the

choice of y that attains the bound is is constant on each half of the partition, differing

only by a sign across the bounds. However, this is not the only situation in which

λ̃max = 2. The reader may find it instructive to construct other matrix-weighted graphs

with λ̃max = 2.

Proposition 2.1 immediately implies that the adjacency spectrum of a d-regular

matrix-weighted graph is contained in [−d, d].

2.1.1. Notation

Throughout, G will be an underlying graph with vertex set V and edge set E. The

graph will have n vertices and weight matrices will be k × k. Regular matrix-weighted

graphs will have (algebraic) degree d. Thus, the relevant matrices A, L, etc. will have

size kn×kn. Eigenvalues of the Laplacian will be denoted λi, in increasing order, while

eigenvalues of the adjacency matrix will be denoted µi, in decreasing order.

2.2. Cellular Sheaves

Matrix-weighted graphs are instances of a more general structure on a graph: a

cellular sheaf. We can understand their spectral theory in the context of a broader

spectral theory of cellular sheaves.
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Definition 2.1. Let G be a graph. A cellular sheaf F on G consists of the following

data:

1. A vector space F (v) for each vertex v of G, called the stalk over v

2. A vector space F (e) for each edge e of G, called the stalk over e, and

3. A linear map Fv P e : F (v)→ F (e) for each incident vertex-edge pair v P e of G,

called the restriction map from v to e.

Cellular sheaves describe systems of consistency relationships for data over graphs.

Data may be assigned to vertices and edges, living in the stalks over these edges, and

the restriction maps give conditions for consistency of this data.

Definition 2.2. Let F be a cellular sheaf over a graph G. A global section x of F is

given by a choice of a vector xv ∈ F (v) for each vertex v of G, such that for every edge

e = u ∼ v of G, Fv P exv = Fu P exu.

Because these conditions are linear, the global sections ofF form a vector space, which

we denote H0(G;F ). The global sections of a sheaf are the collections of elements

satisfying all the consistency conditions specified by the sheaf. We think of the space

of section H0(G;F ) as lying inside a larger space of assignments to vertices, which we

denote

C0(G;F ) =
⊕

v

F (v).

This is the space of 0-cochains of F ; it consists of all possible assignments to vertex

stalks without reference to any consistency conditions. There is an analogous space of

1-cochains consisting of assignments to edge stalks:

C1(G;F ) =
⊕

e

F (e).

The space of global sections H0(G;F ) is the kernel of a map δ : C0(G;F ) →

C1(G;F ), called the coboundary operator. Given an orientation of the graph, the value

of this operator on an oriented edge e = u→ v is

(δx)e = Fv P exv − Fu P exu.

6



It is straightforward to see that δx = 0 if and only if x ∈ H0(G;F ). The coboundary

operator is a generalization of the signed incidence matrix of a graph.

The terminology associated with cellular sheaves is perhaps somewhat foreign. It

originates in a more complex definition of sheaves used in geometry and topology (see,

e.g., [16, 17]). The central idea of a sheaf as describing constraints for data param-

eterized by a space holds across these different instantiations. Cellular sheaves are a

restriction of the concept to the discrete setting of regular cell complexes, which makes

them particularly amenable to computation and applications [14]. We have further spe-

cialized to sheaves over graphs, which makes the constructions more accessible but also

perhaps further obscures the reasoning for the terminology. A similar but algebraically

dual definition of a sheaf on a graph was given by Friedman [18], who suggested the

study of the Laplacians and adjacency matrices of such structures.

Thus far we have only required that the stalks of a cellular sheaf be abstract vec-

tor spaces. To develop the relationship between matrix-weighted graphs and cellular

sheaves, each stalk must also have an inner product. Inner products on stalks extend

to inner products on C0(G;F ) and C1(G;F ), and induce an adjoint δ∗ to the cobound-

ary operator. The sheaf Laplacian is then defined as LF = δ∗δ. This is a linear map

C0(G;F )→ C0(G;F ), computed vertexwise by

(LF x)v =
∑

u,v P e

F ∗v P e(Fv P exv − Fu P exu).

As a quadratic form, it is given by

〈x, LF x〉 = 〈δx, δx〉 = ‖δx‖2 =
∑

u,v P e

‖Fv P exv − Fu P exu‖
2.

The Laplacian quadratic form measures how close a 0-cochain is to being a global

section. Sheaf Laplacians are studied in greater generality in [15, 19].

How are matrix-weighted graphs related to cellular sheaves? We begin first by

relating weighted graphs to weighted cellular sheaves. This relationship is mediated

through the constant sheaf R on a graph G. This sheaf has all vertex and edge stalks

equal to R, and all restriction maps the identity. The global sections of the con-

stant sheaf are precisely the locally constant R-valued functions on the vertices of G.

A weighting on G corresponds to a choice of an inner product on each edge stalk:
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〈x, y〉e = wexy for x, y ∈ R(e) = R. If we assign all vertex stalks the standard inner

product 〈x, y〉v = xy, the corresponding sheaf Laplacian is precisely the weighted graph

Laplacian.

To extend this to matrix-weighted graphs, we need to reckon more carefully with

the semidefiniteness of the weight matrices. If We is not positive definite, it does not

define an inner product on Rk, but only on im We. Given a matrix-weighted graph

G with k × k weight matrices, we construct a sheaf F with vertex stalks F (v) = Rk

and edge stalks F (e) = im We ⊆ Rk. The restriction map Fv P e is the orthogonal

projection Rk → im We. We give the vertex stalks the standard inner product on Rk,

and the edge stalks the inner product 〈x, y〉e = xT Wey. It is easily checked that under the

standard basis for Rk the corresponding sheaf Laplacian is equal to the matrix-weighted

Laplacian. Since the definition of the sheaf Laplacian is LF = δ∗δ, it is obvious that

the matrix-weighted graph Laplacian is positive semidefinite.

The interpretation of matrix-weighed graphs in terms of weighted cellular sheaves

gives them a coordinate-free description. We could define a matrix-weighted graph

to be a weighted cellular sheaf F with all vertex stalks equal to some vector space

V , where for any edge e = u ∼ v, the restriction maps Fu P e and Fv P e are equal to

some map we will call ρe. If an orthonormal basis for V is chosen, the resulting sheaf

Laplacian matrix will have the form of the Laplacian of a matrix-weighted graph. The

edge weights We will be equal to ρ∗eρe. The adjacency matrix is then obtained from the

Laplacian by A = D − L.

Under the direct definition, the matrix-weighted adjacency matrix is the primary

object, and the Laplacian is generated therefrom. In the context of cellular sheaves,

however, the Laplacian is the principal operator, and the adjacency matrix is extracted

from it. For more general sheaves, the Laplacian matrix contains more information

than the adjacency matrix.

For the remainder of this paper, we will adopt the elementary but less general ter-

minology of matrix-weighted graphs. However, the sheaf-theoretic perspective has

inspired and motivated this work, and can provide important insights into the deeper

reasons for certain phenomena.
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2.3. Examples

One frequently seen example of a matrix-weighted graph comes from the mechan-

ical analysis of bar-and-joint structures. Given a collection of struts joined together

at their ends, represented as a structure in R3, consider the graph G with edges corre-

sponding to struts and vertices corresponding to joints. We assign to each edge a scaled

copy of the 3 × 3 matrix which computes the orthogonal projection onto the direction

spanned by the corresponding strut in R3. The scaling factor is a stiffness parameter

representing the resistance of the strut to compression or tension. The Laplacian of

this matrix-weighted graph is the stiffness matrix of the truss. As a quadratic form, it

represents the amount of work done under an infinitesimal deformation of the structure.

This physical interpretation allows us to quickly conclude that the kernel of the

Laplacian contains more than simply the constant functions V → R3. These con-

stant functions correspond to infinitesimal translations; the fact that they are in the

kernel of L is the physical fact that translations of a truss do not cause it to deform

and hence require no expenditure of energy. But rigid rotations of the truss also cause

no deformation, and so the infinitesimal generators of these rotations must also corre-

spond to vectors in the kernel of L. The kernel of L is therefore at least 6-dimensional.

These bar-and-joint structures give a class of nontrivial examples of connected matrix-

weighted graphs with a Laplacian kernel of dimension greater than k.

An essentially identical example has been studied for specific graphs representing

molecular structures, under the name “vibrational spectrum” [20], so called because

the eigenfunctions of the matrix-weighted Laplacian correspond (up to first order) to

vibrational modes of the molecule. The vibrational spectrum of a symmetric graph

with a symmetric embedding in R3 is strongly constrained by representation theoretic

considerations.

Other instances of matrix-weighted graphs arise in the engineering control liter-

ature. Examples include certain systems of coupled oscillators [11], differential ob-

servations of networked systems [12], and distributed coordination for autonomous

agents [13]. Many of these motivating examples are quite concrete, but very little the-

oretical work has been done exploring the algebraic and spectral properties of matrix-

weighted graphs. One exception to this pattern is [21], which constructed effective
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resistance matrices for matrix-weighted graphs.

2.4. Relationships between scalar- and matrix-weighted graphs

There is a straightforward way to turn any weighted graph into a matrix-weighted

graph for any block size k: simply let the matrix-valued weights be Wuv = wuvIk×k. The

corresponding matrix-weighted adjacency and Laplacian matrices are then given by

A⊗ Ik×k and L⊗ Ik×k, where the tensor product of operators is realized by the Kronecker

product on matrices.

Conversely, given a matrix-weighted graph (G,W), we can construct a scalar-weighted

graph (G, tr W) by letting we = tr(We) for all edges e of G. This construction is invariant

to an orthogonal change of basis of the vertex stalks in the cellular sheaf definition. The

Laplacian and adjacency spectral radii of (G,W) are controlled by the spectral radii of

(G, tr W).

Proposition 2.2. Let (G,W) be a matrix-weighted graph with n vertices and k × k

weights, with Laplacian LW , and let Ltr W be the Laplacian of (G, tr W). If λ1(L) ≤

λ2(L) ≤ · · · are the eigenvalues of the matrix L, then

k∑
i=1

λk+i(LW ) ≤ λ2(Ltr W ) ≤ λn(Ltr W ) ≤
k∑

i=1

λ(n−1)k+i(LW ).

Proof. Let x be a unit eigenvector of Ltr W corresponding to the eigenvalue λ2(Ltr W ).

Let {e1, . . . , ek} be an orthonormal basis for Rk, and consider the orthogonal vectors

x ⊗ ei, which are naturally in the domain of LW . Note that ‖x ⊗ ei‖ = 1. Further,

for any constant Rk-valued function y = a1 ⊗ s on the vertices of G, 〈x ⊗ ei, y〉 =

a〈x,1〉〈ei, s〉 = 0, so x ⊗ ei is orthogonal to the eigenspace of LW corresponding to the

first k eigenvalues. Thus by a generalized form of the Courant-Fischer theorem, we
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have

k∑
i=1

λk+i(LW ) ≤
k∑

i=1

〈x ⊗ ei, LW x ⊗ ei〉

=

k∑
i=1

∑
u,v P e

〈(x ⊗ ei)v − (x ⊗ ei)u,We((x ⊗ ei)v − (x ⊗ ei)u)〉

=
∑

u,v P e

(xv − xu)2
k∑

i=1

〈ei,Weei〉

=
∑

u,v P e

tr(We)(xv − xu)2 = 〈x, Ltr W x〉 = λ2(Ltr W ).

The same calculation applied to an eigenvector for λn(Ltr W ) gives the upper bound.

An immediate corollary is that λk+1(LW ) ≤ 1
kλ2(Ltr W ) and λnk(LW ) ≥ 1

kλn(Ltr W ).

The analogous bound for the adjacency eigenvalues is proved by exactly the same

method. For dI-regular matrix-weighted graphs the bound implied by Proposition 2.2

and the fact that A = dI − L is stronger, since it constrains µk+1 rather than µ1.

Proposition 2.3. Let (G,W) be a matrix-weighted graph on n vertices with k × k

weights, with adjacency matrix AW , and let Atr W be the adjacency matrix of (G, tr W).

If µ1(A) ≥ µ2(A) ≥ · · · ≥ are the eigenvalues of the matrix A, then

k∑
i=1

µi(AW ) ≥ µ1(Atr W ) ≥ µn(Atr W ) ≥
k∑

i=1

µ(n−1)k+i(AW ).

3. An Expander Mixing Lemma

The expander mixing lemma is a well-known result, perhaps first explicitly proven

in [22] (although it has arisen in many different guises), connecting the number of

edges between a pair of subsets of a graph and its adjacency spectrum. For a d-regular

graph with n vertices, it states that for any two subsets of vertices S ,T , the number of

edges between S and T , e(S ,T ), satisfies

∣∣∣∣∣e(S ,T ) −
d |S | |T |

n

∣∣∣∣∣ ≤ |µ2|

√
|S | |T |

(
1 −
|S |
n

) (
1 −
|T |
n

)
,

where µ2 is the nontrivial eigenvalue of AG of largest modulus.
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When applied to weighted graphs, the edge count e(S ,T ) is the sum of weights of

edges between S and T . Similarly, for matrix weighted graphs, we define E(S ,T ) =∑
s∈S ,t∈T Wst, so that the edge count becomes a positive semidefinite matrix. If we let

IS be the kn × k block matrix with blocks

(IS )v =


Ik×k v ∈ S

0 v < S

and similarly for IT , it is easy to see that for a matrix-weighted graph (G,W), E(S ,T ) =

IT
S AIT . This fact allows us to generalize the standard proof of the expander mixing

lemma to d-regular matrix-weighted graphs.

Lemma 3.1. Let (G,W) be a d-regular matrix-weighted graph on n vertices, with k×k

weight matrices. Denote the adjacency eigenvalues of G by d = µ1 = · · · = µk ≥ µk+1 ≥

· · · , and let |µ| = max
(∑k

i=1 µk+i,
∑k

i=1

∣∣∣µ(n−1)k+i

∣∣∣). If S and T are subsets of the vertices

of G, the matrix-weighted edge count E(S ,T ) satisfies

∣∣∣∣∣tr(E(S ,T )) −
kd |S | |T |

n

∣∣∣∣∣ ≤ |µ|
√
|S | |T |

(
1 −
|S |
n

) (
1 −
|T |
n

)
(3)

and the eigenvalues of E(S ,T ) − k|S ||T |
n have magnitude at most

max(|µk+1| , |µkn|)

√
|S | |T |

(
1 −
|S |
n

) (
1 −
|T |
n

)
. (4)

Proof. The first inequality follows directly from Proposition 2.2 and the standard ex-

pander mixing lemma. Note that tr(E(S ,T )) for the matrix weighting W on G is equal

to e(S ,T ) for the weighting tr W. Thus, if |µ(Atr W )| is the magnitude of the largest

nontrivial adjacency eigenvalue of (G, tr W),

∣∣∣∣∣tr(E(S ,T )) −
kd |S | |T |

n

∣∣∣∣∣ ≤ |µ(Atr W )|

√
|S | |T |

(
1 −
|S |
n

) (
1 −
|T |
n

)
.

We use the fact that |µ(Atr W )| = max(|d − λ2(Ltr W )| , |d − λn(Ltr W )|) to apply the

trace bound, finding that

|µ(Atr W )| ≤ max

 k∑
i=1

µk+i,

k∑
i=1

|µkn−i+1|

 .
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For the second inequality we must mimic the proof of the standard expander mix-

ing lemma. We use the fact that E(S ,T ) = IT
S AGIT , and decompose these indicator

matrices appropriately. Let I⊥S = IS −
|S |
n IG and I⊥T = IT −

|T |
n IG. This gives an orthog-

onal decomposition of IS and IT in the following strong sense: every column of IG is

orthogonal to every column of I⊥S and every column of I⊥T . Further, any two columns

selected from one of IG, I⊥S , and I⊥T have disjoint supports and hence are orthogonal as

well. We therefore have

E(S ,T ) = IT
S AGIT

=

(
|S |
n

IG + I⊥S

)T

AG

(
|T |
n

IG + I⊥T

)
=
|S | |T |

n2 IT
G AGIG +

|S |
n

IT
G AGI⊥T + (I⊥S )T AG

|T |
n

IG + (I⊥S )T AGI⊥T .

Every column of IG is an eigenvector of AG with eigenvalue d, so that, for instance

(I⊥S )T AGIG = d(I⊥S )T IG = 0, due to the orthogonality relations between these matrices.

Thus, the two middle terms vanish, and the first term is equal to d|S ||T |
n Ik×k. Combining

these simplifications gives

E(S ,T ) −
d |S | |T |

n
Ik×k = (I⊥S )T AGI⊥T . (5)

We therefore need to bound the eigenvalues of (I⊥S )T AGI⊥T . Since this matrix is sym-

metric, its eigenvalues are bounded in magnitude by the operator norm ‖(I⊥S )T AGI⊥T ‖,

which is bounded above by |µk+1| ‖I⊥S ‖‖I
⊥
T ‖. The matrices I⊥S and I⊥T have orthog-

onal columns, so their operator norm is equal to the norm of any column. Since

‖(I⊥S )i‖
2 + ‖

|S |
n (IG)i‖

2 = ‖(IS )i‖
2, we have

‖(I⊥S )i‖ =

√
|S | −

|S |2

n2 n =

√
|S |

(
1 −
|S |
n

)
,

and similarly for ‖(I⊥T )i‖. Substituting these values for the operator norms gives the

bound in (4).

The two bounds given in Lemma 3.1 are incomparable. The spectral bound (4)

implies a weaker inequality on tr(E(S ,T )) than (3) gives. On the other hand, the trace

bound implies weaker constraints on the eigenvalues of E(S ,T )− k|S ||T |
n than the spectral
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bound does. The second bound is perhaps the most interesting, as it is not directly

implied by a reduction of (G,W) to a scalar-weighted graph.

One interpretation of the standard expander mixing lemma is that for a d-regular

graph with small |µ2|, the number of edges between two subsets is not far from the ex-

pected number of edges between two such subsets in a random d-regular graph. Simi-

larly, the matrix-weighted expander mixing lemma says that d-regular matrix-weighted

graphs with small |µ2| have properties similar to those of a random d-regular graph with

matrix weights Ik×k.

The name “expander mixing lemma” arises from the use of this result to prove

theorems about mixing times of random walks on regular graphs. While it is pos-

sible to construct stochastic processes that might justly be termed “random walks”

associated with matrix-weighted graphs (and cellular sheaves in general), Lemma 3.1

does not seem to have much relevance to their behavior. It may be that this lemma

does control the behavior of other sorts of dynamical processes on a matrix-weighted

graph—perhaps the spread of information under a diffusion-like process.

3.1. Irregular matrix-weighted graphs

The standard expander mixing lemma has an extension to non-regular graphs. Like

isoperimetric inequalities for irregular graphs, it replaces the simple count of vertices

in a subset with the volume of the subset: the sum of degrees of those vertices. That is,

vol(S ) =
∑

s∈S ds. The irregular expander mixing lemma for a scalar-weighted graph

G is then captured in the formula

∣∣∣∣∣E(S ,T ) −
vol(S ) vol(T )

vol(G)

∣∣∣∣∣ ≤ |µ̃2|

√
vol(S ) vol(T )

(
1 −

vol(S )
vol(G)

) (
1 −

vol(T )
vol(G)

)
,

where |µ̃2| is the magnitude of the largest nontrivial eigenvalue of the normalized adja-

cency matrix Ã = D−1/2AD−1/2 of G.

For a matrix-weighted graph, we define the volume of a set S of vertices similarly:

vol(S ) =
∑
s∈S

Ds =
∑
s∈S

∑
s P e

We.
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Lemma 3.2. Let (G,W) be a matrix-weighted graph with n vertices and k × k weight

matrices. If S and T are subsets of the vertices of G, then

|tr (E(S ,T ) − V(S ,T ))| ≤ |µk+1|
√

tr(vol(S ) − V(S , S )) tr(vol(T ) − V(T,T )), (6)

where V(A, B) = vol(A) vol(G)−1 vol(B) and 1 = µ̃1 = . . . = µ̃k ≥ |µ̃k+1| ≥ . . . are the

eigenvalues of the normalized adjacency matrix ÃW of (G,W) ordered by decreasing

absolute value.

Proof. Define the kn× k matrix ψ whose k × k blocks consist of the diagonal blocks of

D1/2. The columns of ψ are all eigenvectors of Ã with eigenvalue 1. We further define

the matrices ψS and ψT , where the blocks of ψ corresponding to vertices not in S or T

have been set to zero. Then we have

E(S ,T ) = IT
S AIT = ψT

S D−1/2AD−1/2ψT = ψT
S ÃψT .

We can also calculate vol(S ) and vol(T ) from ψS and ψT :

vol(S ) = IT
S DIS = ψT

SψS = ψT
Sψ.

Following the pattern from the proof of the regular expander mixing lemma, we de-

compose ψS = ψ vol(G)−1 vol(S ) +ψ⊥S . These two terms satisfy a sort of orthogonality:

(ψ⊥S )Tψ vol(G)−1 vol(S ) = (ψS − ψ vol(G)−1 vol(S ))Tψ vol(G)−1 vol(S )

= vol(S ) vol(G)−1 vol(S ) − vol(S ) vol(G)−1 vol(G) vol(G)−1 vol(S ) = 0.

The individual columns of these two matrices do not satisfy a nice orthogonality

relation, however, which means we will only be able to obtain a bound on the trace of

E(S ,T ), not its eigenvalues. We have

E(S ,T ) = (ψS )T ÃψT

= (ψ vol(G)−1 vol(S ) + ψ⊥S )T Ã(ψ vol(G)−1 vol(T ) + ψ⊥T )

= vol(S ) vol(G)−1ψÃψ vol(G)−1 vol(T ) + (ψ⊥S )T Ãψ⊥T

= vol(S ) vol(G)−1 vol(T ) + (ψ⊥S )T Ãψ⊥T ,
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and hence

E(S ,T ) − vol(S ) vol(G)−1 vol(T ) = (ψ⊥S )T Ãψ⊥T . (7)

Taking the trace and absolute value gives

∣∣∣tr(E(S ,T ) − vol(S ) vol(G)−1 vol(T )
∣∣∣ ≤ ∣∣∣tr((ψ⊥S )T Ãψ⊥T )

∣∣∣
≤ ‖ψ⊥S ‖F‖Ãψ

⊥
T ‖F

≤ |µ̃k+1| ‖ψ
⊥
S ‖F‖ψ

⊥
T ‖F .

The norms in this formula are, e.g.,

‖ψ⊥S ‖F = tr
[
(ψS − ψ vol(G)−1 vol(S ))T (ψS − ψ vol(G)−1 vol(S ))

]
= tr

[
vol(S ) − vol(S ) vol(G)−1 vol(S )

]
.

Combining these calculations gives the inequality (6).

In the case that G is actually regular, this inequality is looser than (3). It amounts to

replacing, e.g.,
∑k

i=1 µk+i with k |µ|k+1 in that formula.

4. Isoperimetric Inequalities

The expander mixing lemma is one canonical inequality comparing combinatorial

measures of expansion (the density of edges between two subsets of vertices) with spec-

tral measures of expansion (the largest nontrivial eigenvalue of the adjacency matrix).

Another important inequality is the Cheeger inequality, which connects the Cheeger

constant of a graph with the second eigenvalue of the (normalized) Laplacian. Letting

h(S ) =
E(S ,V\S )

min(vol(S ),vol(V\S )) and hG = minS h(S ), the Cheeger inequality states that

λ̃2

2
≤ hG ≤

√
2λ̃2, (8)

where λ̃2 is the second-smallest eigenvalue of the normalized Laplacian of G [23, ch.

2]. This is known as an isoperimetric inequality, due to the analogy with the classical

problem of controlling the perimeter of a subset of R2 in terms of its area. Here, the

perimeter is represented by the (weighted) number of edges leaving a subset of vertices,
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while the area of that subset is given by the sum of vertex degrees. In the case of a d-

regular graph, this is simply proportional to the number of vertices.

A generalization of the Cheeger constant to matrix-weighted graphs is most straight-

forward for dI-regular weightings, as this simplifies the interpretation of the denomina-

tor. The correct generalization of this ratio is unclear for irregular graphs. For a subset

S of vertices of a dI-regular matrix-weighted graph, we define two Cheeger ratios:

htr(S ) =
tr E(S ,V \ S )

d min(|S | , |V \ S |)
(9)

h�(S ) =
E(S ,V \ S )

d min(|S | , |V \ S |)
. (10)

These lead to two Cheeger constants

htr
G = min

S⊆V
htr(S ) (11)

h�G = inf
S⊆V

h�(S ). (12)

This second Cheeger constant is defined as an infimum in the set of symmetric

positive semidefinite matrices under the Loewner order, where A � B if B − A is

positive semidefinite. Since this is only a partial order, there may not exist a set S of

vertices such that h�G = h�(S ).

Proposition 4.1. Let (G,W) be a dI-regular matrix-weighted graph with k × k weight

matrices. Then

htr
G ≥

1
2d

k∑
i=1

λk+i (13)

h�G �
λk+1

2d
I, (14)

where 0 = λ1 = · · · = λk ≤ λk+1 ≤ . . . are the eigenvalues of the Laplacian of (G,W).

Proof. The first inequality is a direct consequence of the relationship between (G,W)

and (G, tr W) given in Proposition 2.2. Since tr(E(S ,V \ S )) is equal to the total weight

of edges between S and V \ S in (G, tr W), we apply the standard Cheeger bound

to obtain, for every S , htr(S ) ≥ 1
2dλ2(tr W). We then apply the relation λ2(tr W) ≥∑k

i=1 λk+i to obtain the bound.
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The second bound is only slightly more involved. For a vertex subset S of G, we

let xS ∈ RV be the vector with

xS
v =


|V \ S | v ∈ S

|S | v < S
.

Then x is orthogonal to the constant vector 1 and if |S | < |V \ S |,

(x ⊗ I)T L(x ⊗ I)
xT x

=
E(S ,V \ S )
|S | |V \ S |

� 2dh�(S ).

Meanwhile, the Courant-Fischer theorem implies that for any y ∈ RV orthogonal to 1,

λk+1I �
(y ⊗ I)T L(y ⊗ I)

‖y‖2
.

Taking the infimum over the relevant sets, we then have

λk+1

2d
I �

1
2d

inf
y⊥1

(y ⊗ I)T L(y ⊗ I)
‖y‖2

� inf
S⊂V

1
2d

(xS ⊗ I)T L(xS ⊗ I)
‖xS ‖2

� h�G.

These bounds correspond to the easy-to-prove side of the standard Cheeger inequal-

ity. Unfortunately, analogous upper bounds on hG in terms of the spectrum of L do not

exist. Specifically, there are no upper bounds of the form htr
G ≤ f (λ2k), where f (0) = 0,

nor of the form h�G � F(λ2k), where F is the zero matrix when λ2k = 0. To see this,

consider the matrix-weighted graph G in Figure 1. The weight matrices correspond to

the edge labels as follows:

a :

1 0

0 0

 b :

 1
4

√
3

4
√

3
4

3
4

 c :

 1
4 −

√
3

4

−
√

3
4

3
4

 . (15)

This graph is regular and has algebraic degree 3
2 . Any two of these weight matri-

ces sum to a full-rank matrix, and removing any set of edges with the same weights

leaves a connected graph. Therefore, for any set S of vertices of G, E(S ,V \ S ) is

full rank. Hence, h�G � αI for some α > 0 and htr
G > 0. However, we can calculate

that the zero eigenvalue of the Laplacian of G has multiplicity four, so λ2k = 0, mean-

ing that our putative spectral upper bound on hG must be zero. The conclusion to be

drawn is that unlike the case for scalar-weighted graphs, combinatorial measures of

expansion in matrix-weighted graphs are in general weaker than spectral measures of
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Figure 1: A counterexample to a spectral upper bound on the matrix-weighted Cheeger constants

expansion. One cannot ensure that eigenvalues of the matrix-weighted Laplacian are

bounded away from zero by controlling a Cheeger constant (at least one of the form we

have considered here).

5. Expander Sheaves

These expansion-related bounds for matrix-weighted graphs suggest that we at-

tempt to generalize expander graphs to the matrix-weighted setting. Expander graphs

are typically defined as unweighted graphs, so a generalization allowing matrix weights

may seem slightly contradictory. However, many constructions of expander graphs end

up producing graphs which may have multiple edges between a pair of vertices, which

amounts to allowing positive integer weights. One may think of this as allowing a se-

quence of combinatorial decisions about where to place edges in the graph. We extend

this to the matrix-weighted setting by adding an extra choice: that of a subspace of

Rk for each edge. Such a subspace might be generated by iteratively choosing atomic

elements of the lattice of subspaces of Rk.

A precise definition is as follows:

Definition 5.1. Let (G,W) be a d-regular matrix-weighted graph. We say that it is a
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matrix-weighted η-expander if all its weight matrices are orthogonal projections Rk →

Rk and all nontrivial eigenvalues of its adjacency matrix are at most d−η in magnitude.

There is the immediate question of how to construct a regular matrix-weighted

graph with projection-valued weights, regardless of its spectral properties. The trivial

construction is obvious: take a regular unweighted graph, and assign each edge the

identity matrix. A more interesting approach is to note that the condition that Dv =∑
v P e We = dI is the same as the condition for the relevant matrices We to form a

tight fusion frame with frame constant d. Fusion frames are a generalization of the

notion of frame from harmonic analysis [24]. They are typically defined as collections

of subspaces of Vi ≤ Rk such that any vector x ∈ Rk is uniquely determined by its

projections onto Vi for all i. Equivalently, a fusion frame may be defined as a collection

of orthogonal projections on Rk that sum to an invertible operator. Tight fusion frames

are those for which these orthogonal projections sum to a scalar multiple of the identity.

It is a nontrivial result that tight fusion frames exist [25]. In particular, for r ≥

dk/`e+ 2, there exists a tight fusion frame in Rk consisting of r subspaces of dimension

`, while for r ≤ dk/`e, no tight fusion frames of this form exist.

We can use a nontrivial fusion frame to construct nontrivial matrix-weighted graphs

with projection-valued weights. Let G be an r-regular graph with an r-edge coloring,

and take a tight fusion frame in Rk with r subspaces of dimension `. Assign one element

of the fusion frame to each edge color of G; these will become the matrix weights. The

resulting matrix-weighted graph has degree r`/k. Note that this degree may not be an

integer.

A matrix-weighted graph constructed in this way need not have any particular ex-

pansion properties. Indeed, its Laplacian may have a large kernel. However, nontrivial

individual examples of these matrix-weighted expanders do exist. Consider the graph

shown in Figure 2. The underlying graph is 4-regular, and is 4-edge colored. The

weights are given by the matrices in (15), with d corresponding to the identity matrix.

Thus, the four-element fusion frame used is given by three one-dimensional subspaces

in R2 together with R2 itself. The resulting matrix-weighted graph is regular, with

algebraic degree 5/2. Numerical calculations show that the nontrivial adjacency eigen-
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Figure 2: A nontrivial matrix-weighted expander

values of this graph lie between −2.406 and 1.803, giving it a two-sided expansion

constant of η = 0.094. While this particular expansion constant is nothing to write

home about, significantly better expansion may be possible in general.

The Alon-Boppana bound [26] gives a constraint on the spectral expansion of an

infinite family of graphs. The second adjacency eigenvalue µ2 of a d-regular graph is

bounded below by 2
√

d − 1−o(1). Is there a similar bound for matrix-weighted graphs?

Take a r-regular graph with k × k matrix weights which are orthogonal projections of

rank `, and hence has matrix-degree r`/kI. If we take the trace of weights, we get a

scalar-weighted graph whose edge weights are all `. Its adjacency matrix is ` times the

adjacency matrix of the underlying graph. The Laplacian trace bound (2.2) implies that

kµ2(AW ) ≥ `µ2(AG), so

µ2(AW ) ≥ 2
`

k

√
r − 1 − o(1).

The algebraic degree of this matrix-weighted graph is d = r`/k, so the bound is

µ2(AW ) ≥ 2d
√

r − 1/r. For 2 < d < r,
√

r − 1/r ≤
√

d − 1/d, and so 2d
√

r − 1/r ≤

2
√

d − 1. Since this bound is less restrictive on µ2, it may be possible for a family

of matrix-weighted expander graphs to exhibit better-than-Ramanujan expansion for a
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given algebraic degree. To be clear, we have not here shown that this is the case; we

have only failed to rule it out using one line of argument. However, other approaches to

extending the Alon-Boppana bound to matrix-weighted graphs give the same results.

Such a property may be useful for the design of communications networks. Ex-

pander graphs were initially introduced in part to study the design of fault-tolerant net-

works. They have since found use in the design of distributed consensus algorithms.

The convergence rate of the algorithm depends on the spectral properties of the net-

work, and hence Ramanujan graphs give optimal networks for a given amount of local

connectivity. The algebraic degree of a matrix-weighted expander represents the total

amount of communication a node must carry on with its neighbors in order to advance

another step in the algorithm. Better expansion constants for a given algebraic degree

mean faster convergence for the same amount of communication.

6. Conclusion

Matrix-weighted graphs are an expressive generalization of undirected graphs, and

expand the concern of spectral graph theory to operators acting on higher-dimensional

spaces of functions. Expansion in matrix-weighted graphs has more subtle behavior

than in standard graphs. We have shown that spectral measures of expansion control

combinatorial measures of expansion, as in the expander mixing lemma and one side of

the Cheeger inequality. However, we do not have a converse combinatorial condition

for a matrix-weighted graph to have good spectral expansion.

There is a converse to the expander mixing lemma for scalar-weighted graphs [27].

Its proof was a byproduct of a construction of families of expander graphs with nearly

optimal spectral expansion. It would be interesting to know whether a converse sim-

ilarly holds for matrix-weighted graphs. This would offer some level of control over

the spectral properties of matrix-weighted graphs in terms of a combinatorial measure

of expansion. The failure to exist of a spectral upper bound on the Cheeger constant

suggests that a converse to the expander mixing lemma may be similarly false.

The problem of constructing infinite families of matrix-weighted expanders offers

many interesting challenges. Standard methods for constructing expander graphs do
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not readily generalize to the matrix-weighted case. Even the problem of choosing ker-

nels of weights so that the Laplacian kernel has dimension k—what in the sheaf theo-

retic language might be termed an “approximation to the constant sheaf”—is a subtle

problem. Solving these combinatorial problems will require insights about graphs, lat-

tices of subspaces, and fusion frames.

Other aspects of the theory of matrix-weighted graphs are also interesting. Some

results may be obtained as specializations of results in the spectral theory of cellular

sheaves [15], but this frontier has only just begun to be explored. Combining the broad

perspective of cellular sheaves with the particular properties of matrix-weighted graphs

gives a fruitful field for further investigation.
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