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ABSTRACT

Cellular sheaves are a mathematical structure specifying con-
sistency relations for data associated to vertices and edges of
a graph, generalizing connection graphs and matrix weighted
graphs. We consider the problem of learning such a sheaf
from a collection of highly consistent or smooth signals asso-
ciated to the vertices of the underlying graph.

1. INTRODUCTION

A recent theme in network-based analysis of data has been
the introduction of additional data or structure to a graph.
Connection graphs and their graph connection Laplacians are
perhaps the most broadly studied example [1]. In this setting,
an n × n orthogonal matrix ρuv is associated with each ori-
ented edge u ∼ v of a weighted graph; these matrices specify
local consistency relations for vector-valued data on vertices.
The connection Laplacian is a symmetric positive semidefi-
nite block matrix with diagonal block entries Lvv = dv In and
off-diagonal block entries Luv = wuvρuv and Lvu = wuvρ

T
uv .

The connection Laplacian has been considered as the gen-
erator of a diffusion on the tangent bundle of a discretized
manifold, yielding an embedding of the manifold [1–3]. It has
also been studied in connection with synchronization prob-
lems [4], where one wishes to align certain parameters given
their pairwise relationships [5–7].

Another recently studied instance of extra structure at-
tached to a graph is the matrix-weighted graph [8, 9]. For
these, an n × n symmetric positive semidefinite matrix Wuv is
assigned to each edge u ∼ v of a graph, representing a gener-
alization of standard nonnegative weights. The Laplacian of
a matrix-weighted graph is a block matrix with block diag-
onal entries Lvv =

∑
u∼v Wuv and block off-diagonal entries

Luv = −Wuv .
Various authors have considered the problem of learn-

ing graphs from signals supported on their vertices [10–13].
However, to our knowledge, the analogous problem of learn-
ing these additional structures from data has not been ad-
dressed.
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As an example of a situation in which learning higher al-
gebraic structure may be useful, consider the multireference
alignment problem. Here we have noisy copies of the same
signal, permuted cyclically, which we wish to align for aver-
aging. One approach—angular synchronization—computes
the best shift aligning each pair of signals and constructs
a connection graph representing these shifts, from which a
global alignment is extracted. Rather than using only local
information to construct this graph, we might wish to learn
the graph from the global structure of the data, choosing the
connection graph is most consistent with the observed sig-
nals. This approach would additionally allow identification
of clusters of distinct signals. Such an approach would be
similar to, but motivated differently from, the one proposed
by Bandeira et al in [14].

In this paper, we propose a framework for learning various
types of graphs with extra structure from data. The structures
we consider fall under the category of cellular sheaves, gener-
alizing both connection graphs and matrix-weighted graphs.

1.1. Cellular Sheaves

A cellular sheaf F associated to a graph G is specified by the
following data:

• A vector space F (v) for each vertex v of G;
• A vector space F (e) for each edge e of G;
• A linear map Fv P e : F (v) → F (e) for each incident

vertex-edge pair v P e, called a restriction map.
The vector spaces F (v) and F (e) are called the stalks
over v and e. There are two natural vector spaces asso-
ciated with a cellular sheaf, given by the direct sums of
stalks over vertices and over edges, respectively, denoted
C0(G;F ) =

⊕
v∈V (G) F (v) and C1(G;F ) =

⊕
e∈E(G) F (e).

Vectors in C0(G;F ) may be thought of as signals associ-
ated with the vertices of G, while vectors in C1(G;F ) may
be thought of as signals on edges, or as local discrepancies
between assignments to vertices.

A section of F is a globally consistent choice of data on
vertex stalks over G — a choice xv ∈ F (v) for all v ∈ V(G)
such that for every edge e = u ∼ v, Fu P exu = Fv P exv .
Thus, a sheaf specifies local linear relationships for consis-
tency of data, and sections of the sheaf are globally defined



data which respect all local consistency relationships. The
sections of a sheaf form a vector space, denoted H0(G;F ),
which is a subspace of C0(X;F ). It is the kernel of the
coboundary map δ : C0(X;F ) → C1(X;F ), which is given
on an oriented edge e = u ∼ v by (δx)e = Fu P exu −Fv P exv .
Given a choice of bases for vertex and edge stalks, δ has a
natural representation as a block matrix where each block
row has two nonzero blocks.

1.2. The Sheaf Laplacian

The matrix δ behaves similarly to the transpose of the signed
incidence matrix in spectral graph theory. In particular, it is
possible to use δ to construct a Laplacian matrix associated
with a sheaf. This is the matrix LF = δT δ. This matrix has
a block structure, with blocks indexed by vertices of G and
block sizes determined by the dimensions of F (v). The off-
diagonal block entries associated with an edge e = u ∼ v

are given by Luv = −F
T
u P eFv P e, while the diagonal block

entries are Lvv =
∑

e:v P e F
T
v P eFv P e. L is clearly positive

semidefinite, and its kernel is the same as the kernel of δ,
which is the space of sections of F .

The study of sheaf Laplacians subsumes the study of
graph Laplacians and their more recent variants. The weighted
graph Laplacian is the sheaf Laplacian of a sheaf with all
stalks R and restriction maps Fu P e = Fv P e =

√
wuv for

each edge e = u ∼ v. To see that a graph connection Lapla-
cian is in fact a sheaf Laplacian, let F (v) = F (e) = Rn for
all vertices and edges, and for an (oriented) edge e = u ∼ v,
let Fu P e =

√
wuv In and Fv P e =

√
wuvρuv . Similarly, the

Laplacian of a matrix-weighted graph is the Laplacian of a
cellular sheaf. Here we may choose any factorization of the
weight matrices Wuv = ρTuvρuv; the Cholesky factorization
or the eigendecomposition serve well. We then simply let
Fu P e = Fv P e = ρuv .

Indeed, a cellular sheaf may be thought of as combining
the rotational aspects of a connection graph with the weight-
ing aspects of a matrix-weighted graph. However, the inter-
actions of these two aspects can lead to more complicated
behavior than either alone. For instance, one may interpret
sheaves with all stalks R in a dynamic sense: each edge has
a gain, which pushes the values observed at its head to be a
scalar multiple of the values at its tail, as well as a weight,
giving the strength of the force imposing this tendency.

The study of the sheaf Laplacian falls under the purview
of spectral sheaf theory [15], which generalizes certain as-
pects of spectral graph theory to cellular sheaves.

1.3. Smooth Signals on a Sheaf

The graph Laplacian is used to quantify a notion of smooth-
ness for signals on the vertices of a graph [16]. A signal x
with xT Lx small is considered smooth, because it has small
variation over edges. The smoothest signals on a graph are

therefore the scalar multiples of the constant vector 1. Sim-
ilarly, the sheaf Laplacian quantifies smoothness of sheaf-
valued signals on graph with respect to the consistency re-
lations specified by the sheaf. A signal x ∈ C0(G;F ) with
xT LF x small is smooth, because it is nearly consistent, and
the smoothest sheaf-valued signals are the sections of F .

Various authors have considered the question of recover-
ing a graph from a collection of signals known to be smooth
on the graph [10–13]. Given a matrix X whose columns are
the smooth signals, the problem considered is usually one of
the form

min
L∈L

g(L, X) + f (L), (1)

where L is the set of all graph Laplacians, g is a cost function
enforcing the constraint that L represent a graph on which the
signals in X are smooth, and f is a cost function enforcing
structure such as sparsity and connectivity of the graph. A
particularly simple and effective choice for g is g(X, L) =
tr(XT LX), which is linear in L and hence easy to optimize.

In this paper, we consider the generalization of this opti-
mization framework to sheaf Laplacians, thus broadening the
class of structures that can be learned from smooth signals.

2. CONES OF SHEAF LAPLACIANS

A key part of the solution of problem (1) is the restriction
of the optimization domain to the set of graph Laplacians.
This set is easy to define: they are the symmetric matrices
with nonnegative diagonal entries and row sum zero. Graph
Laplacians form a convex cone that lies within the cone of
symmetric positive semidefinite (SPSD) matrices.

In order to solve an analogous problem for sheaf Lapla-
cians, we must understand the corresponding domain of in-
terest. The set of sheaf Laplacians with constant-dimensional
vertex stalks is also a convex cone lying within the SPSD
cone. Its description is complicated both by the additional de-
grees of freedom allowed by sheaf Laplacians and the block
structure of the matrices.

From the formula L = δT δ, we see that L is the sum
of matrices Le, one corresponding to each edge. The edge
e = u ∼ v contributes a block-sparse SPSD matrix Le, with
nonzero entries in the blocks (u, u), (u, v), (v, u), and (v, v).
It is not hard to see that by choosing the restriction maps
Fu P e and Fv P e carefully, we can make Le equal to any pos-
itive semidefinite matrix that has the appropriate sparsity pat-
tern. As a result, we can check whether a matrix L is a sheaf
Laplacian for a given choice of vertex stalk dimensions via a
semidefinite feasibility program:

L =
∑

1≤i< j≤n
Mi j

s.t. Mi j � 0
Mi j(s, t) = 0 for s, t , i, j .



When the vertex stalks are one-dimensional, this can be
converted to a second-order cone program. This reformula-
tion has been used in [17] to produce a subset of the semidef-
inite cone for which membership can be efficiently checked.
We will denote the cone of sheaf Laplacians on graphs with n
vertices and d-dimensional vertex stalks Lsheaf(n, d).

The common use of more particular subclasses of matri-
ces such as connection Laplacians suggests optimizing over
smaller cones of matrices. The set of connection Laplacians
is not a convex cone, since convex combinations of orthog-
onal matrices are not orthogonal. However, a simple convex
cone that contains the set of connection Laplacians is the cone
of sheaf Laplacians whose diagonal blocks are scalar multi-
ples of the identity. We will denote this coneLCL(n, d), where
n is the number of vertices and d the block size.

The cone of Laplacians of matrix-weighted graphs is also
simpler to define. Here the SPSD matrices in the sum forming
L have nonzero entries given by[

Si j −Si j
−Si j Si j

]
,

where Si j is an SPSD matrix. This reduces the size of the
semidefinite program defining the cone by a factor of four,
since we only need to consider a matrix of one-fourth the size
for each edge. This cone will be denoted LMW(n, d).

3. LEARNING SHEAVES FROM SIGNALS

We now consider the problem of recovering the sheaf Lapla-
cian from sampled smooth signals. To do this, we minimize
the total energy of the sampled signals over all possible sheaf
Laplacians. This is the problem

min
L∈Lsheaf

tr(XT LX) + f (L), (2)

where f enforces connectivity and sparsity. Here we con-
sider different functional forms for f . We will write f (L) =
α fc(L) + β fs(L), with fs controlling sparsity and fc encour-
aging connectivity.

A common way to encourage connectivity of a graph is to
put a lower barrier on the degrees of vertices. However, the
cone of sheaf Laplacians contains block diagonal matrices,
so this constraint does not perfectly enforce connectivity for
sheaves. We let

fc(L) = −
∑
i

log(tr(Lii)),

thus requiring that each diagonal block have at least one
nonzero diagonal entry. Note that since the diagonal blocks
are positive semidefinite, the trace is equal to the nuclear
norm, and we can view this term as putting a barrier on the
nuclear norm of the diagonal blocks.

The objective without fs(L) already encourages sparsity
of L, since we are minimizing a linear function within a par-
ticular cone. Any summand Le in the decomposition of L

that would increase tr(XT LX) will not appear in the solution.
Only those blocks that decrease the overall energy of the vec-
tors in X will appear in the solution. Thus, rather than adding
a term to encourage sparsity, we add a regularization term to
counterbalance this tendency toward sparsity. This term is

fs(L) =
∑
i< j

‖Li j ‖
2
F,

where i and j index blocks of L. As an L2-type norm, this en-
courages uniformity in the size of off-diagonal entries. These
particular functional forms for fc and fs are analogous to
ones introduced and tested by Kalofolias [12] in the setting
of graph Laplacians.

4. NUMERICAL EXPERIMENTS

To evaluate this method numerically, we produced random
graphs, constructed sheaves on these graphs, and then at-
tempted to recover the sheaf Laplacian from smooth signals
on the sheaf. Smooth signals were obtained by sampling
random Gaussian vectors and then smoothing them according
to their expansion in terms of the eigenvectors of the sheaf
Laplacian L0. This may be interpreted as a filtering step in
the Fourier domain associated with the sheaf Laplacian. If
x =

∑
i aivi , where vi are the eigenvectors of LF , we smooth

x by multiplying the coefficients ai by a filter function φ(λi),
i.e. x̃ =

∑
i φ(λi)aivi . We use the filter function φ(λ) = 1

1+10λ
inspired by the smoothing that occurs in Tikhonov regular-
ization, where we have scaled L0 so that its eigenvalues lie
in [0, 1]. This smoothing method and others were considered
in [12]. After normalizing the smoothed vectors, we add
Gaussian noise with a standard deviation of σ = 10−2.

We then attempt to recover L from the sampled data X by
following the optimization framework described in section 3.
We perform this optimization over several cones: the cone
Lsheaf of sheaf Laplacians, the cone LMW of Laplacians of
matrix weighted graphs, the coneLconn containing graph con-
nection Laplacians, and finally, as controls, the cones Lgraph
and S of graph Laplacians and positive semidefinite matrices.
Once a Laplacian matrix is recovered, it is rescaled to have
minimal Frobenius distance from the original matrix. This
allows our recovery method to be invariant to changes in the
hyperparameters that hold α/β constant.

The random graphs were of Erdos-Renyi type with prob-
ability parameter just above the connectivity threshold, p =
1.1 log(Nv)/Nv . To generate sheaves over the graphs, we used
three methods of choosing arbitrary restriction maps. One
is to choose random matrices with Gaussian distributions for
their entries for each restriction map; this can produce an ar-
bitrary sheaf. We also performed the same randomization but
forced the two matrices corresponding to a given edge to be
equal; this produces a matrix-weighted graph. Finally, we
constructed sheaves whose restriction maps were randomly
chosen orthogonal matrices, yielding connection Laplacians.



To the best of our knowledge, no framework has previ-
ously been proposed to recover any of the classes of Lapla-
cians considered here from smooth sampled signals. As a
result, we compare to optimization over the cone of graph
Laplacians and the cone of positive semidefinite matrices as
baselines for performance.

Results are contained in Table 1, giving average relative
L1 and L2 elementwise error in the recovered Laplacian and
adjacency matrices, as well as the F-score (harmonic mean of
precision and recall) for the sparsity pattern of off-diagonal
blocks. Results are averaged over 20 trials. We tested sheaves
with 1- and 2-dimensional stalks, with Nv = 100 and Nv =

50 vertices, respectively, to give Laplacians of constant size
100 × 100. The results reported are those corresponding to
the optimal parameter of β for the L1 error, obtained via a
grid search.

5. DISCUSSION

Optimizing over the appropriate cone outperforms optimiza-
tion over the cone of graph Laplacians or the semidefinite
cone. This is particularly true when considering the spar-
sity measures and the SPSD cone. If we suspect our data has
richer structure than can be described by graph Laplacians,
but is still generated by pairwise interactions, it is appropri-
ate to optimize over the cone of sheaf Laplacians. Interest-
ingly, optimizing over Lsheaf gave better results than optimiz-
ing over LCL even when matrices were sampled from the set
of connection Laplacians.

While the overall error rates are high, the recovered ma-
trices exhibit a remarkable amount of qualitative similarity to
the original matrices. In particular, the sparsity patterns of the
learned matrices are fairly precise predictors of the true spar-
sity pattern: a nonzero block in the learned matrix is a strong
indicator that the corresponding block in the original matrix
is nonzero.

It should be noted that when stalks are one-dimensional,
matrix weighted graphs are simply weighted graphs, and
connection Laplacians correspond to Laplacians of signed
graphs.1 Thus, the results for matrix-weighted graphs with
1-dimensional stalks are quite similar to those for graphs.

The relative error in the adjacency matrices is significantly
higher than the relative error for the Laplacians. Part of this
is due to the fact that our output matrices are rescaled to min-
imize the distance between the Laplacians, and part of this is
due to the optimization objective itself. The diagonal is much
more informative for the class of sheaf Laplacians than it is
for graph Laplacians, as it is not recoverable from the adja-
cency matrix alone. This means that in many situations the
Laplacian error is the most appropriate metric.

1There are two definitions of signed Laplacians; the appropriate one in
this context is the one given by changing only the signs of off-diagonal entries
of the standard graph Laplacian. This ensures positive semidefiniteness of the
signed Laplacian.

It would be interesting to study the recovery of sheaf
Laplacians from a statistical perspective, as done in [10]
and [13] by consideration of Gaussian Markov random fields
(GMRFs) and inverse covariance matrices. Sheaf Laplacians
with one-dimensional stalks correspond to pairwise normal-
izable GMRFs [18], where the probability density function
can be factored as a product of Gaussian densities each of
which depends on only two coordinates. Sheaf Laplacians
with higher-dimensional stalks would correspond to a block-
wise version of this condition, which to our knowledge has
not yet been studied. The algorithm we have proposed is pre-
liminary, and we believe many improvements may be made
to its performance and analysis.

Cellular sheaves offer opportunities for extending graph
signal processing to richer forms of data and more complex
interaction schemes. Further extensions are possible by com-
bining sheaf theory with the recently introduced field of signal
processing on simplicial complexes [19, 20]. Such advances
will allow understanding of new types of data and relation-
ships between them.

Table 1. Error rates for sheaf recovery
Gaussian Connection Matrix-Weighted

1 2 1 2 1 2

Sheaf
L1 L 0.3568 0.5178 0.2869 0.4128 0.3676 0.4514
L2 L 0.2531 0.4461 0.2139 0.3035 0.3094 0.3840
L1 A 0.6571 0.6752 0.5097 0.5488 0.5794 0.5348
L2 A 0.5451 0.6091 0.4850 0.5172 0.4992 0.4863

F 0.5053 0.6414 0.6965 0.7179 0.5596 0.7563

CL
L1 L 0.5435 0.7150 0.5711 0.6362 0.6294 0.7794
L2 L 0.4235 0.5640 0.4397 0.4678 0.5626 0.6438
L1 A 1.0165 1.0315 1.0260 1.0410 1.0289 1.0461
L2 A 1.0027 1.0068 1.0063 1.0111 1.0042 1.0096

F 0.1226 0.1885 0.1280 0.1882 0.1177 0.1789

MW
L1 L 0.7209 0.9409 0.5780 0.8242 0.3615 0.4435
L2 L 0.4108 0.6479 0.3647 0.6354 0.3064 0.3762
L1 A 1.5512 1.5382 1.0597 0.9838 0.5601 0.5296
L2 A 1.0697 1.2882 0.8332 0.9759 0.4740 0.4791

F 0.2439 0.2803 0.2905 0.5553 0.5094 0.7478

Graph
L1 L 0.9098 0.8668 0.6920 0.6967 0.4468 0.5984
L2 L 0.5724 0.5253 0.4901 0.4832 0.3303 0.4635
L1 A 1.5081 1.3677 1.0101 0.9752 0.6454 0.7491
L2 A 0.9895 0.9550 0.8283 0.8330 0.4843 0.6343

F 0.1861 0.2709 0.3288 0.3466 0.4701 0.4090

SPD
L1 L 0.5443 0.6636 0.5701 0.6253 0.6317 0.7251
L2 L 0.4213 0.5033 0.4321 0.4601 0.5567 0.5990
L1 A 1.0190 1.0133 1.0247 1.0169 1.0317 1.0208
L2 A 0.9946 0.9943 0.9875 0.9890 0.9917 0.9909

F 0.2440 0.2554 0.2470 0.3508 0.1456 0.2104
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