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Abstract—In this paper we introduce a new class of local
linear operators on graphs, the sheaf Laplacians, which provide
drop-in replacements for graph Laplacians in distributed algo-
rithms. These operators can enforce more general constraints
on data distributed in a network than those given by the graph
Laplacian. The constraints for such optimization problems can
be framed in the context of sheaf cohomology, leading to
a description of this framework as distributed optimization
with homological constraints. We formulate a representative
problem, elucidate its solution with sheaf Laplacians, and give
illustrative examples of potential applications.

Index Terms—optimization, distributed systems, spectral
graph theory, algebraic topology, cellular sheaf

I. INTRODUCTION

Distributed optimization is a broad field with applications
in machine learning, systems control, sensor networks, and
many other areas. Algorithms for distributed optimization
typically act over a network modeled as a graph, with
each node both performing local optimization over its own
parameters and communicating with its neighbors to share
parameters. Typically the parameter spaces for each node are
identical, and the goal is to have each node converge to the
same optimum of a joint objective function given by some
combination of objective functions available to each node.

In our formulation, the overall goal of optimizing a sum
of local objective functions remains, but we relax the as-
sumption that each node has the same parameter space, and
nodes are not required to communicate their entire vector
of parameters to every neighbor. Such network communica-
tions structures have not typically been considered, although
they have been technically possible to construct by hand.
Our contribution gives an interpretation of certain types of
generalized constraints for data on a network in terms of
mathematical structures called cellular sheaves [1] and their
associated Laplacian operators [2]. Cellular sheaves represent
local systems of linear constraints for data on a network, and
the sheaf Laplacians recently introduced by the authors allow
immediate translation of these local constraints into a local
linear operator which can be immediately substituted into any
distributed algorithm that makes use of graph Laplacians.
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II. DISTRIBUTED OPTIMIZATION

Distributed optimization has an illustrious history spanning
a diversity of models and approaches. Some of the earliest
work is due to Tsitsiklis and collaborators, studying asyn-
chronous methods where all agents know the entire objective
function [3]. More recent work has applied other notions
from convex optimization such as primal-dual methods and
the alternating direction method of multipliers [4], [5]. Other
work has studied situations where agents have only partial
knowledge of the objective function [6], [7]. Algorithms
for these problems often involve a combination of a local
optimization process (e.g., gradient descent) and a global
consensus process (e.g., graph diffusion). These processes
can be implemented and integrated in different ways, and
the ultimate goals and assumptions of these algorithms vary.
The function to be optimized may be known to all agents
in the network, or it may be broken up into a sum of
pieces, each of which is known to one agent. Agents may
have only stochastic approximations to the true cost function.
Communication may happen between every pair of neighbors
at every time, or gossip-type algorithms may be used. The
common thread, however, is that agents are able to cooperate
to find an optimum using information distributed throughout
the network. We will follow here a framework established by
Wang and Elia [8], [9], which due to its general formulation
in terms of Lagrangian dynamics and graph Laplacian con-
straints is readily adaptable to the case of sheaf Laplacians.
Our description will focus on the unconstrained problem, but
it is of course possible to apply this approach to problems
with local convex constraints.

In this framework, the agents are connected according to a
graph G with a set of nodes V . Each node v ∈ V is able to
compute a locally known convex, smooth objective function
fv : Rn → R and its gradients. The global objective function
is f(x) =

∑
v∈V fv(x) for x ∈ Rn. Since each node has its

own local parameter in the state space Rn, we reformulate
the problem to make this redundancy explicit:

min
∑
V ∈V

fv(xv) (1)

s.t. xu = xv ∀u, v.



This problem is equivalent to the original problem in the
sense that a minimizer of (1) consists of one copy of the
minimizer of f for each vertex. This problem is further
converted into one reflecting the network structure by only
including the equality constraints corresponding to edges
u ∼ v. Letting x = vec({xv}v∈V ), we can cast this
constraint in terms of the graph Laplacian:

(L⊗ I)x = 0.

(Throughout, we will use bold variables to denote “vectors
of vectors” created by concatenating local state variables.)

We make one more adjustment to the problem before
producing a distributed algorithm. Although this is not strictly
necessary, we add the term xT (L ⊗ I)x to the objective
function, to improve stability and convergence of the re-
sulting algorithm while leaving the minimum and minimizer
undisturbed. Our problem then becomes

min
x

∑
V ∈V

fv(xv) + xT (L⊗ I)x (2)

s.t. (L⊗ I)x = 0.

The Lagrangian corresponding to this problem is

L(x, z) =
∑
V ∈V

fv(xv) + xT (L⊗ I)x + zT (L⊗ I)x.

From it, we can build a dynamical system whose stationary
points are those points satisfying the Karush-Kuhn-Tucker
(KKT) conditions for (2):

ẋ = − ∂

∂x
L(x, z) = −∇f(x)− 2(L⊗ I)x− (L⊗ I)z

ż =
∂

∂z
L(x, z) = (L⊗ I)x,

(3)

where f(x) =
∑
v∈V fv(xv). These are the saddle-point

dynamics associated with L; we may think of them as a sort
of primal-dual evolution, since we perform gradient descent
in the primal variable x and gradient ascent in the dual
variable z.

Saddle-point dynamics for functions convex in one argu-
ment and concave in the other are well studied. In particular,
we have the following result from [10]:

Proposition II.1 (Corollary 4.5 in [10]). Let F : Rn×Rm →
R be a continuously differentiable function which is globally
convex-concave and linear in its second argument, such that
for every saddle point (x∗, z∗) of F , if F (x, z∗) = F (x∗, z∗),
then (x, z∗) is also a saddle point of F . Then the set of
saddle points of F is globably asymptotically stable under
the saddle-point dynamics and each trajectory converges to
a point.

When the fv are smooth and convex, the function L(x, z)
satisfies these conditions, so every trajectory of (3) converges
to a point satisfying the KKT conditions for (2). Further,
these dynamics are locally implementable: to compute ẋv
and żv , the agent at node v only needs to know the values
of xu and zu for u ∼ v.

This continuous-time system may then be discretized, most
commonly with an Euler-type rule, yielding a discrete-time
primal-dual optimization algorithm. The appropriate step size
for an Euler discretization will depend on the eigenvalues of
L and the Hessians of the fv .

Extensions of this framework are possible, including im-
plementing convex constraints on the variables xv and the use
of nonsmooth objective functions. For the sake of exposition,
we focus on the simplest case. This framework is also far
from the only approach to distributed optimization. Many
approaches focus on a discrete-time evolution from the
beginning, and some use only primal or only dual variables.
Our use of the framework introduced by Wang and Elia is
motivated by the ease with which it may be adapted to more
general distributed problems.

III. CELLULAR SHEAVES

Sheaves are a structure arising in algebraic topology and
geometry, where they specify ways that data may be attached
to a space. They control the ways that locally specified data
may be patched together to globally consistent information.
Cellular sheaves are a discrete, computable version of these
structures amenable to real-world implementation. In the
context of networks, cellular sheaves mediate the relationship
between local constraints for data and the global integration
of those constraints.

For our purposes, graphs are undirected, oriented, and
loop-free, although there may be multiple edges between two
vertices.

Definition III.1. Let G = (V,E) be a graph. A cellular
sheaf of vector spaces F over G is given by the following
data:
• A vector space F(v) for each vertex v of G
• A vector space F(e) for each edge e of G
• A linear map FvP e : F(v) → F(e) for each incident

vertex-edge pair vP e.

The vector spaces F(v) and F(e) are called the stalks over
v and e, and the linear map FvP e is called a restriction map.

A sheaf first specifies places for data over a graph to reside.
Data associated with a vertex v lives inside the stalk F(v).
Similarly, if we associate data to edges, it lives in the edge
stalks F(e). The restriction maps of the sheaf then describe
local linear constraints for data over the graph. Specifically,
over an edge e = u ∼ v, the sheaf imposes the constraint
FuP exu = FvP exv for xu ∈ F(u) and xv ∈ F(v).

To formalize these constraints, we define the vector spaces
of cochains associated with a cellular sheaf. These are the
spaces

C0(G;F) =
⊕
v∈V
F(v) C1(G;F) =

⊕
e∈E
F(e).

We think of C0(G;F), the space of 0-cochains, as a space of
signals over vertices, and similarly the space of 1-cochains
C1(G;F) as a space of signals over edges.

The local consistency constraints for data in the stalks of
F assemble to global conditions on signals. We say that x =



vec({xu}u∈V (G)) ∈ C0(G;F) is a global section of F if
it satisfies all local consistency constraints. That is, it must
satisfy FuP exu = FvP exv for every edge e = u ∼ v.
The global sections of F are globally consistent assignments
of data to the vertices of G. The global sections of F are
also called the degree-0 cohomology of F , and are denoted
H0(G;F).

Example. The simplest cellular sheaf is the constant sheaf
with stalk a given vector space V . This is the sheaf with
every stalk equal to V , and every restriction map the identity.
We denote this sheaf V . The global sections of V are the
locally constant V -valued functions on G, i.e., those which
are constant on every connected component of G.

A. Sheaf Laplacians

Naturally associated with a sheaf F on an (oriented, undi-
rected) graph G = (V,E) is a linear map δ : C0(G;F) →
C1(G;F). This is called the coboundary map, and has the
important role of computing global sections of F . On an
oriented edge e = u→ v, the coboundary map is defined by

(δx)e = FvP exv −FuP exu.

If we represent δ as a matrix with block structure corre-
sponding to the direct sum decompositions of C0 and C1, it
is block row sparse: each block row has only two nonzero
blocks.

The coboundary map of a sheaf is analogous to the signed
incidence matrix of a graph. Indeed, the coboundary map
of the constant sheaf R can be identified with the signed
incidence matrix of the underlying graph. Since incidence
matrices of graphs can be used to construct the graph
Laplacian, it is natural, then, to build a sheaf Laplacian out
of the sheaf coboundary map.

Definition III.2. Let F be a cellular sheaf on a graph G.
The sheaf Laplacian of F is the map LF : C0(G;F) →
C0(G;F) given by LF = δ∗δ.

The sheaf Laplacian has a block structure induced by
the block structure of δ. The diagonal block correspond-
ing to a vertex v is Lv,v =

∑
vP e F∗vP eFvP e, while

the off-diagonal block corresponding to a pair of vertices
u, v joined by an edge e is Lu,v = −F∗uP eFvP e. When
applied to a vector x ∈ C0(G;F), we have (LFx)v =∑
u,vP e∈E F∗vP e(FvP exv −FuP exu).
Some facts about the Laplacian are immediate from its

definition: it is a positive semidefinite matrix with kerLF =
ker δ = H0(G;F). Since the coboundary map of the constant
sheaf is identical to the incidence matrix of its underlying
graph, the sheaf Laplacian of the constant sheaf R is the
same as the graph Laplacian. Somewhat more generally, the
sheaf Laplacian LRn is equal to LG⊗In×n. Note also that the
sheaf Laplacian does not depend on the choice of orientation
of G, just as the graph Laplacian does not.

We can use the sheaf Laplacian to give a quantitative mea-
sure of consistency or smoothness for elements of C0(G;F).
The most consistent 0-cochains are those which are global

sections, but we might also wish to consider cochains which
are close to being consistent. The Laplacian quadratic form

xTLFx =
∑

e=u∼v∈E
‖FuP exu −FvP exv‖2

gives a convenient measure of the total edgewise discrepancy
of a cochain x ∈ C0(G;F). The behavior of this quadratic
form is, of course, closely related to the spectrum of LF .
We might call the eigenvector corresponding to the smallest
nonzero eigenvalue of LF the cochain closest to being a
global section of F , or perhaps the smoothest non-“constant”
signal with respect to the structure specified by F .

Sheaf Laplacians are a broad class of linear operators on
networks. In many situations where graph Laplacians are
used, sheaf Laplacians can serve as a drop-in substitute to
add more general classes of constraints.

B. Some Examples of Cellular Sheaves

We give here two examples of cellular sheaves that may
arise in engineering applications. The first is a general
construction applicable to sensor networks.

Example (The sheaf of functions on a space). Suppose we
have a collection of sensors S which observe subsets Ui of
some space X . That is, there is some function f : X → Rn,
and each sensor si can measure f |Ui

: Ui → Rn. The sensors
naturally have a network structure determined by overlaps of
their domains: si ∼ sj if and only if Ui∩Uj 6= ∅. This leads
naturally to a cellular sheaf on the sensor network. The stalk
over a sensor is F(si) = {f : Ui → Rn}, while the stalk
over the edge between sensors si and sj is F(si ∼ sj) =
{f : Ui ∩ Uj → Rn}. The restriction map F(si)→ F(si ∼
sj) is given by restriction of functions: (fi : Ui → Rn) 7→
(fi|Ui∩Uj : Ui ∩ Uj → Rn).

The global sections of this sheaf (under the assumption
of full sensor coverage of X) correspond precisely to the
functions X → Rn. The vertex stalks encode the space
of possible local observations for each sensor, while the
constraints associated to each edge require that the obser-
vations of each pair of sensors agree where they overlap. In
mathematical terminology, this is the sheaf of functions on
X subordinate to the cover {Ui}.

When X is a discrete set, these spaces of functions
are simply finite-dimensional vector spaces, and thus the
construction of the sheaf Laplacian is simple. Restriction is
simply an orthogonal projection, and its adjoint is inclusion
or extension by zero.

Our second example is somewhat more concrete, focusing
on the space of admissible trajectories of a set of coupled
linear systems.

Example (Linear control systems). Suppose we have a
collection of discrete-time linear time-invariant systems Σi
with states xi, inputs ui, and outputs yi, given by evolution
equations

xi[t+ 1] = Aix[t] +Biui[t]

yi[t] = Cix[t] +Diu[t],



which are coupled via linear connections between inputs and
outputs:

Uijui[t] = Yjiyj [t]. (4)

We may think of the maps Uij and Yji as coordinate
projections, so that only a subset of the inputs to system
i are coupled to a subset of the outputs of system j, but this
restriction is not necessary. These equations can be seen as a
cellular sheafM. The underlying graph G has one vertex for
each system Σi, and an edge between any two systems which
have a coupling. The stalk over vertex i is the vector space
of permissible trajectories of the system Σi: if the state space
is ni dimensional and the input space mi dimensional, this
space is the subspace of (Rni ⊕ Rmi)∞ satisfying the state
evolution equation for Σi. These vector spaces are infinite
dimensional, but we will make a restriction down to finite-
dimensional stalks shortly. The stalk over an edge i ∼ j is the
space (imYij⊕imUij)

∞ = (imUji⊕imYji)
∞. It represents

the space in which the system couplings are defined at each
time step. The restriction map MiP(i∼j) is given by the
formula

(MiP(i∼j)(xi, ui))[t] = (Yij(Cixi[t] +Diui[t]), Uijui[t]).

The restriction mapMjP(i∼j) is the same but with the order
of factors switched, i.e.:

(MjP(i∼j)(xj , uj))[t] = (Ujiuj [t], (Yji(Cjxj [t]+Djuj [t])).

This means that the constraint imposed by the sheaf over
the edge i ∼ j is precisely the coupling constraint (4). As
a result, the global sections of M correspond precisely to
trajectories of the coupled system.

Many modifications may be made to this sheaf. We can
impose a finite time horizon by simply truncating the stalks
to finite products of the state and coupling spaces. Rather
than set the vertex stalks to subspaces of the state and
input trajectory space, we can let M(i) = (Rni ⊕ Rmi)∞,
and add a new vertex-edge pair constraining sections to be
admissible trajectories. To do this, add a new vertex i′ with
stalk M(i′) = 0. The edge stalk is M(i ∼ i′) = (Rni)∞.
The restriction map from i′ must be the zero map, and the
restriction map from i is given by (MiP(i∼i′)(xi, ui))[t] =
xi[t+ 1]−Aixi[t]−Biui[t].

Note also that the structure of this system leaves the
possibility that trajectories are underdetermined: not all of
the inputs of a given system may be coupled to anything.
We may think of this as the system posessing a free input
that may therefore be connected to a controller.

IV. DISTRIBUTED OPTIMIZATION WITH SHEAF
LAPLACIANS

Cellular sheaves and their Laplacians immediately suggest
a generalized version of the distributed optimization problem
considered in Section II. The simplest distributed optimiza-
tion problem supported on a sheaf F over a graph G with
vertex set V is of the form

min
∑
v∈V

fv(xv)

s.t. x ∈ H0(G;F),

where fv : F(v)→ R is a convex function for each v ∈ V .
If F is the constant sheaf with stalk Rn, this problem

becomes the standard distributed optimization problem on
G, as H0(G;Rn) is simply the space of constant Rn-valued
functions on vertices of G. Since H0(G;F) is simply kerLF ,
the constraint x ∈ H0(G;F) is equivalent to LFx = 0.
Thus any algorithm for distributed optimization that begins
from the reformulation of a global consensus constraint as a
constraint involving the graph Laplacian can be immediately
applied to this problem of optimization with homological
constraints.

To implement this in the Lagrangian saddle point dynamics
framework, we rewrite the problem as a problem with the
same minimizer

min
∑
v∈V

fv(xv) + xTLFx

s.t. LFx = 0.

This problem is formally identical to the optimization prob-
lem discussed in Section II. As a result, the saddle point
dynamics

ẋ = −∇f(x)− 2LFx− LFz
ż = LFx

converge under the same assumptions on the fv to a point
satisfying the KKT conditions. The locality of these dynam-
ics is manifest when we write them vertexwise:

ẋv = −∇fv(xv)− 2
∑
vP e
uP e

F∗vP e(FvP exv −FuP exu)

−
∑
vP e
uP e

F∗vP e(FvP ezv −FuP ezu)

żv =
∑
vP e
uP e

F∗vP e(FvP exv −FuP exu)

To compute its local gradient, each node v need only know
the values FuP exu for each edge e = u ∼ v. Translation
to a discrete-time algorithm proceeds in the same way as for
the classical problem, via Euler’s method.

A. Related Work

The problem of distributed optimization with local linear
constraints has been considered by Nassif et al [11] and Hua
et al [12]. Both papers consider a formulation focused on
a distributed online learning problem, with individual nodes
learning local regression coefficients from streaming data.
Under their model, the regression coefficients xv correspond-
ing to nodes in certain clusters Ck are required to satisfy
affine relationships

∑
v∈Ck

Avkxv = bk. This is similar to
(and indeed more general than) the constraints we consider,
where each edge of the graph implements a linear constraint
FvP exv = FuP exu.

Our approach differs in several ways. First, the introduc-
tion of the sheaf Laplacian makes the imposition of pairwise
linear constraints between local parameters formally identical



to the standard consensus-based situation. There is no need
to design an entirely new algorithm to approach the problem
with sheaf homological constraints. Further, the similarity
to standard Laplacian-based algorithms makes adaptation
to new situations and problems simpler. For instance, the
analysis in both [11] and [12] focuses on the case where
the objective functions are least mean squares cost functions
for linear regression-like problems, whereas the analysis here
immediately applies to any smooth convex objective. Finally,
the distributed algorithm proposed in [11] formally creates
a copy of each node for each constraint cluster it belongs
to. This may be inefficient for problems with many pairwise
constraints, since each node must keep a copy of its parameter
space corresponding to each constraint set it belongs to.

Other recent work has studied distributed optimization
subject to subspace constraints by constructing local linear
operators preserving a desired subspace [13], [14]. In this
work, the relevant subspace is typically a space of bandlim-
ited signals on a graph, and the local operator is designed to
converge after iterated application to an orthogonal projection
onto the desired subspace. Sheaf Laplacians are a straightfor-
ward source of such approximate projection operators, since
for an appropriate choice of α, the matrix I −αLF satisfies
the necessary requirements: as n→∞, (I−αLF )n becomes
an orthogonal projection onto H0(G;F).

Since sheaf Laplacians are a class of local linear operators
on networks with desirable properties, we expect that it will
be possible to make use of them in other approaches to
distributed optimization. Local linear constraints are naturally
imposed in many problems, and sheaves are the natural way
to handle these constraints in a distributed fashion.

V. APPLICATIONS

In this section, we present a pair of straightforward appli-
cations of this distributed optimization framework inspired
by the sheaves discussed in Section III-B.

A. Signal Recovery on Graphs

Suppose we have a collection of sensors located at nodes
of a graph G, each of which observes the values of some
function on the graph at each node in its neighborhood.
That is, the sensor at vertex v observes the vector x̂v =
(f(u) + εuv)u∈N (v), where εuv is an independent error
term for each pair (u, v). We wish to estimate f under
the graph signal processing-inspired assumption that it is
smooth: it has low variation over edges. This can be cast as
a naturally distributed optimization problem over the sensing
sheaf discussed in Section III-B.

We cover the vertex set of G by neighborhoods of vertices
and construct the corresponding sheaf F of functions subor-
dinate to this cover. Thus, the stalk F(v) is equal to RN (v),
and the edge stalk F(e) for the edge between u and v is
equal to R{u,v}. The restriction map F(v) → F(e) is the
obvious projection map RN (v) → R{u,v}. The signal recov-

ery problem is a tradeoff between smoothness and fidelity to
the observations. A global formulation is as follows:

min
f :V (G)→R

∑
v∈V (G)

∑
u∈N (v)

(f(u)−x̂v(u))2+a
∑
u∼v

(f(u)−f(v))2.

To make this problem distributed, we optimize over 0-
cochains of F instead of over functions on V (G), imposing
the constraint that these be sections of F :

min
x∈C0(G;F)

∑
v∈V (G)

(
‖xv − x̂v‖2 +

a

2

∑
u∼v

(xv(v)− xv(u))2

)
s.t. LFx = 0. (5)

The objective is now defined as a sum of functions, each
acting on a single stalk of F . Note that this particular choice
of data fidelity and signal smoothness cost functions is not
necessary; we could choose any smooth convex cost function.

The corresponding saddle point dynamics for this problem
are

ẋv(v) = −2(xv(v)− x̂v(v))− a
∑
u∼v

(xv(v)− xv(u))

−2
∑
u∼v

(xv(v)− xu(v))−
∑
u∼v

(zv(v)− zu(v))

ẋv(u) = −2(xv(u)− x̂v(u))− a(xv(u)− xv(v))

−(xv(u)− xu(v))− (zv(u)− zu(v))

żv(v) =
∑
u∼v

(xv(v)− xu(v))

żv(u) = xv(u)− xu(v),

where u ∈ N (v) and u 6= v.

B. Distributed Model Predictive Control

Take a coupled collection of discrete-time linear systems
as discussed in Section III-B, and suppose that this coupling
is not full—that is, not all inputs to a given subsystem are
coupled to an output of another subsystem, so that the total
coupled system can be seen as having a free input, distributed
among the subsystems. A collection of local controllers is
attached to each of these free inputs, and they wish to
cooperate to steer the global system toward a particular state.
We assume that the communication graph is the same as the
coupling graph: a controller for system i may talk to the
controllers for the systems to which system i is coupled.

We formulate this problem in the model predictive control
setting, where at each time step the controllers wish to
estimate a sequence of controls that optimally steer each
system Σi to a particular state x̂i within a finite time horizon
k. We formalize the controllers’ problem as follows:

min
x,u

∑
i

fi(xi[k]− x̂i) +
∑
i

k−1∑
t=0

gi(ui[t])

s.t. xi[0] = x0i

(x,u) ∈ H0(G;M)

where fi and gi are convex cost functions on the terminal
state and the control inputs. The extra local constraint coming
from the initial state of the system requires a slight extension



of the optimization algorithm. An extra dual variable is
added to the Lagrangian; since these constraints are local,
the corresponding primal-dual dynamics are still local.

The saddle-point dynamics for this problem are more
involved to describe than for the signal estimation problem.
The augmented Lagrangian is

L(x,u, z, µ) =
∑
i

fi(xi[k]− x̂i) +
∑
i

k−1∑
t=0

gi(ui[t])

+ (x,u)TLM(x,u) +
∑
i

µTi (xi[0]− x0i ) + zTLM(x,u)

This yields the saddle point dynamics

ẋi[0] = −µi − 2(LM(x, u))xi [t]− (LM(zx, zu))xi [t]

ẋi[t] = −2(LM(x, u))xi [t]− (LM(zx, zu))xi [t] (0 < t < k)

ẋi[k] = −∇fi(xi[k]− x̂i)− 2(LM(x, u))xi [k]− (LM(zx, zu))xi [k]

u̇i[t] = −∇gi(ui[t])− 2(LM(x, u))ui [t]− (LM(zx, zu))ui [t]

żxi [t] = (LM(x, u))xi [t]

żui [t] = (LM(x, u))ui [t]

µ̇i = xi[0]− x0i
where

(LM(x, u))xi [t]

=
∑
i∼j

CTi Y
T
ij (YijCixi[t] + YijDiui[t]− Ujiuj [t])

−Aixi[t− 1]−Biui[t− 1] + (I +ATi Ai)xi[t]

+ATi Bui[t]−ATi xi[t+ 1]

and

(LM(x, u))ui [t]

=
∑
i∼j

DT
i Y

T
ij (YijCixi[t] + YijDiui[t]− Ujiuj [t])

+
∑
i∼j

UTij (Uijui[t]− YjiCjxj [t]− YjiDjuj [t])

+BTi Aixi[t] +BTi Biui[t]−BTi xi[t+ 1]

are the components of the sheaf Laplacian applied to (x, u).
(For time indices less than 0 or greater than k we take the
corresponding vectors to be zero.)

Although these dynamics are complicated to write explic-
itly, their derivation follows directly from the construction of
the sheaf M and the definition of its Laplacian. No special
insight is required to invent the optimization dynamics,
only to deduce that the relevant constraints on admissible
trajectories form the structure of a sheaf.

Note again that the specific structure of the cost functional
is not crucial to the distributed implementation, only that it
be defined locally on each stalk of M.

VI. SIMULATIONS

To illustrate the behavior of the continuous-time dynamics,
we generate a synthetic instance of the problem in Sec-
tion V-A. G = (V,E) is a random 4-regular graph with
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Fig. 1. The true function f : V → R.

N = 25 nodes. The true function f : V → R is generated
by selecting first a standard multivariate normal function
g : V → R and then smoothing it. The smoothing is done in
the spectral domain of G, scaling the kth (graph Laplacian)
frequency component of g by a Tikhonov-style scaling factor
and then normalizing. To be precise, we have

g′ =

N∑
i=1

1

1 + 10 λi

λN

〈vi, g〉vi, f =
g′

‖g′‖
,

where (λi, vi) is the eigenvalue-eigenvector pair correspond-
ing to the ith largest eigenvalue of LG. Figure 1 shows the
graph G and the smooth signal f .

We then create the sampled signal x̂ by adding mean zero
Gaussian noise with variance σ = 0.2. This is a simple linear
operation x̂ = Af + σn, with A the linear map taking a
function on the vertices of G to its corresponding element
of H0(G;F), and n a vector of iid standard normal ran-
dom variables. The Lagrangian saddle-point dynamics of the
corresponding optimization problem are then implemented
with a standard ODE solver. The initial conditions were
xv(0) = x̂v and z(0) = 0.

Since the non-distributed problem is simply an uncon-
strained quadratic program, we can calculate its solution
exactly: fopt = (ATA + aLG)−1AT x̂. We take the local
estimate floc of the solution to consist of node i’s estimate for
fi, ignoring the other data stored at node i. In Figure 2 we
show the behavior of ‖fopt−floc‖ for a range of choices of a.
We see that after a short period of quick improvement in the
estimate of fopt, the convergence levels off to a slower, but
still exponential rate. In Figure 3 we compare floc to the true
signal f , and see that for the purposes of estimating f , it is
not necessary to run the dynamics for very long at all, since
the estimation error ‖fopt − f‖ is larger than the distributed
optimization error ‖fopt − floc‖ after only a short time.
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Fig. 2. Convergence of the local estimate floc to the optimum fopt.
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Fig. 3. Behavior of ‖floc−f‖ under the distributed optimization dynamics.

VII. CONCLUSION

In this paper, we have proposed a method for distributed
optimization with local linear constraints. These local linear
constraints form the structure of a cellular sheaf on the graph,
and restriction to the set of values satisfying these constraints
may be seen as a homological constraint on the optimization
domain. Cellular sheaf Laplacians give an immediate way
to implement these constraints in distributed optimization
dynamics, which then can be applied to various natural
distributed optimization problems.

Cellular sheaves on graphs can only implement pairwise
linear constraints, which is a significant limitation of this
work compared with that in [11] and [12]. Higher-order linear
constraints may be implemented with sheaves on simplicial
complexes or cellular complexes, which can model higher-
order relationships between agents. Laplacians of sheaves on
higher-dimensional complexes generalize the Hodge Lapla-
cians of simplicial complexes, which have previously been
leveraged in distributed algorithms [15], [16]. Thus, it should
be possible to use sheaves on complexes to alleviate the
restriction to purely pairwise constraints. Another approach
to higher-order constraints would be construction of a sheaf
on a separate network associated with the constraint sets.

This paper has focused on using sheaf Laplacians to
extend the work of Wang and Elia [8], but the framework
of cellular sheaves and their Laplacians is quite general. We
anticipate that sheaf Laplacians will prove useful in other
distributed algorithms as well. The use of cellular sheaves and

their Laplacians in systems design and analysis constitutes a
homological approach to distributed systems, leveraging tools
of algebraic topology and spectral graph theory to produce
topologically inspired methods for concrete problems. The
general framework of optimization described in this paper
might be termed homological programming, and we expect
that it be form a key tool for the topological study of
distributed systems.
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